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An experimental and computational investigation of the unsteady separation behaviour
of two spheres in Mach-4 flow is carried out. The spherical bodies, initially contiguous,
are released with negligible relative velocity and thereafter fly freely according to the
aerodynamic forces experienced. In experiments performed in a supersonic Ludwieg tube,
nylon spheres are initially suspended in the test section by weak threads which are
detached by the arrival of the flow. The subsequent sphere motions and unsteady flow
structures are recorded using high-speed (13 kHz) focused shadowgraphy. The qualitative
separation behaviour and the final lateral velocity of the smaller sphere are found to vary
strongly with both the radius ratio and the initial alignment angle of the two spheres.
More disparate radii and initial configurations in which the smaller sphere centre lies
downstream of the larger sphere centre each increases the tendency for the smaller sphere
to be entrained within the flow region bounded by the bow-shock of the larger body,
rather than expelled from this region. At a critical angle for a given radius ratio (or a
critical radius ratio for a given angle), transition from entrainment to expulsion occurs;
at this critical value, the final lateral velocity is close to maximum due to the same
“surfing” effect noted by Laurence & Deiterding (J. Fluid Mech., vol. 676, 2011, pp. 396-
431) at hypersonic Mach numbers. A visualization-based tracking algorithm is used to
provide quantitative comparisons between the experiments and high-resolution inviscid
numerical simulations, with generally favourable agreement.
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1. Introduction

The study of aerodynamic interactions between separating bodies in high-speed flow
is of interest in such areas as meteoroid fragmentation, the deorbiting of space debris,
and launch-vehicle stage separation. Much of the previous work exploring fundamental
aspects of such interactions has been performed in the context of the atmospheric dis-
ruption of meteoroids. Passey & Melosh (1980) attempted a systematic analysis of the
separation behaviour of discrete fragments, assuming a purely lateral separation between
two bodies of radii r1>r2 (see figure 1). Using simple dimensional arguments, they de-
rived the following scaling law for the final lateral separation velocity, VT , of the smaller
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Figure 1. The lateral fragment separation model assumed by Passey & Melosh (1980).
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Here, V is the velocity of the meteoroid through the atmosphere, ρa and ρm are the atmo-
spheric and meteoroid densities, respectively, and C is a constant that Passey & Melosh
determined through an examination of various terrestrial crater fields to lie between 0.03
and 2.25. Numerical simulations of the symmetrical separation of equally sized bodies
were carried out by Artem’eva & Shuvalov (1996) and Artemieva & Shuvalov (2001),
yielding values of C in (1.1) of approximately 0.2 and 1 for two and multiple bodies,
respectively. These results were incorporated into a model used to simulate specific frag-
mentation events (Artemieva & Shuvalov 2001).

However, a detailed analysis of a videotaped recording of the Morávka fall (Borovic̆ka
& Kalenda 2003) revealed serious shortcomings in Artemieva & Shuvalov’s model, with
measured separation velocities reaching values of up to an order of magnitude larger than
those predicted. An explanation for this discrepancy is suggested by the study of Lau-
rence & Deiterding (2011), which demonstrated that findings for equally sized fragments
cannot be accurately extended to the separation behaviour of bodies of different sizes.
Laurence & Deiterding also showed that the scaling law of Passey & Melosh, (1.1), does
not adequately predict the separation behaviour of unequally sized bodies. This is be-
cause, contrary to Passey & Melosh’s assumption of a purely lateral separation, the
smaller body of the two (referred to hereinafter as the secondary body) is subject to
a higher axial acceleration and thus travels both laterally and downstream relative to
the larger (primary) body. This can lead to a phenomenon referred to as “shock-wave
surfing”, in which the secondary body traces a trajectory so as to follow the bow-shock
of the primary body downstream. In doing so, it develops a significantly larger lateral
velocity than would otherwise be possible, since in the surfing configuration, the interact-
ing flow field produces a substantial repulsive lateral force on the secondary body. More
specifically, the outer side of this body is exposed to singly shocked flow, whereas the
flow on the inner side is processed by the primary bow-shock before passing through the
secondary shock, and thus experiences a smaller overall stagnation pressure loss related
to the weaker entropy rise. Bodies smaller than a critical value do not develop a suffi-
ciently high lateral velocity in the initial stages of separation to commence surfing and
are quickly entrained within the flow region bounded by the primary bow-shock; bodies
significantly larger than the critical value are soon expelled from this region. Thus, the
ratio of body sizes is a crucial parameter in determining the separation behaviour.

The main intent of the present article is to provide an experimental counterpart and
validation to the study of Laurence & Deiterding (2011), which was based on numerical
simulations and theoretical analysis alone. The experimental facility employed is the
GALCIT Ludwieg tube, capable of producing supersonic flows with Mach numbers of
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up to 4.0. While this is significantly lower than the hypersonic Mach numbers of the
earlier study, a preliminary numerical investigation indicated that the surfing effect still
appears at Mach 4. Thus, an extensive experimental investigation was undertaken to
explore the separation characteristics of spherical bodies under such flow conditions. The
idealized configuration for the study is that of two initially contiguous spheres travelling
in supersonic flow, released instantaneously with zero relative velocity and thereafter
allowed to fly freely. Spherical geometries are chosen to avoid the additional complication
of induced rotations; however, considering that the physical effects described above are
in no way particular to flow about spheres, the results obtained are expected to hold, at
least qualitatively, for other regular geometries.

The structure of this article is as follows. In § 2, the experimental facility and appa-
ratus are detailed, including a description of the visualization-based tracking technique
which constitutes the principal means of measurement. In § 3, the computational model
employed alongside the experiments is described and verified. Results of the investigation
are presented and discussed in § 4, and conclusions are drawn in § 5.

2. Experimental facility and apparatus

2.1. Facility

All experiments were performed in the GALCIT Ludwieg tube, a schematic of which
is shown in figure 2. The facility comprises a 17.4-metre long tube, an axisymmetric
converging-diverging contoured Mach 4 nozzle, a test section and a dump tank. It is
a free-jet facility, the cylindrical test section having an internal diameter of 0.391m
compared to the nozzle exit diameter of 0.315m. The area ratio of the nozzle is 11.96;
the difference from the isentropic one-dimensional expansion ratio for a Mach-4 flow
(10.72) is due to viscous effects. In the present experiments, the diaphragm was placed
between the tube and the nozzle, rather than downstream of the test section. The facility
is thus said to be run in ‘upstream-diaphragm’ mode, with the nozzle, test section and
dump tank comprising the downstream section of the facility. In upstream-diaphragm
mode, the flow-establishment time is reduced from approximately 25ms to 3.5ms, but
the passage of the diaphragm fragments through the test section can be problematic:
in a number of the present experiments, fragments were observed in the visualization
sequences (described shortly) to strike or influence the free-flying spheres, in which cases
the results had to be discarded.

A test begins by inserting a 0.13-mm-thick polycarbonate sheet into the diaphragm
holder; the tube and the downstream section are then simultaneously evacuated, typically
to 200Pa. Thereafter, the downstream section is maintained under vacuum while the
tube is filled, quickly to 150 kPa, then slowly until the diaphragm ruptures. The mean
diaphragm burst pressure in the present experiments was 230± 40 kPa.

After diaphragm rupture, an expansion wave propagates upstream into the tube, re-
flects off the end wall, and propagates downstream. The rupture also generates a shock
wave that travels into the downstream section; this is partially reflected from the curved
nozzle wall, with the main part of the shock simply propagating into the dump tank. The
shock is followed by a contact surface which forms the leading boundary of the main test
flow. The partially reflected shock continues to create unsteadiness in the test section
for 3-4 milliseconds, whereafter the steady test time commences; steady flow ends upon
arrival of the reflected expansion wave. Further details regarding the facility can be found
in Mouton & Hornung (2008).
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Figure 2. Schematic of the GALCIT Ludwieg tube facility (all dimensions are in metres) with
a blow-up of the test-section region inset: (A) tube (internal diameter 0.298m); (B) diaphragm
holder; (C) converging-diverging Mach 4 nozzle (exit diameter 0.315m); (D) test section (internal
diameter 0.391m); (E) suspended spheres; (F) dump tank.

2.2. Free-stream characterisation and measurements

The free-stream conditions are calculated by considering an unsteady constant-area ex-
pansion of the gas in the tube, followed by a steady expansion through the contoured
nozzle. First, the Mach number in the tube, Mt, is determined from the area ratio of the
tube to the nozzle throat, At/A

∗:
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The effective reservoir pressure and temperature, p0 and T0, are then calculated in ratio
to the fill pressure and temperature, pf and Tf , respectively:
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The free-stream conditions can then be determined using the steady isentropic one-
dimensional relations, assuming a final Mach number of 4.0. Typical conditions for
the tests were ρ∞=0.07 kgm−3, p∞=1.4 kPa and u∞=670m s−1, with a corresponding
Reynolds number for a 25.4mm diameter sphere of 2.7×105.

To confirm the accuracy of the derived free-stream conditions, a series of Pitot-pressure
measurements were performed. A Pitot probe was designed and instrumented with a
Kulite XCS-190-10A-L piezoresistive pressure transducer, running through a Dynamics
7600A signal conditioner. An example of a Pitot pressure trace appears in figure 3: the
entire steady flow time of approximately 95ms is shown in the left plot, while the test
duration of ∼20ms employed for the present tests is shown in the right plot. The start-up
period of the flow is seen to last approximately 3.5ms from the instant the initial shock
wave produced by the diaphragm rupture reaches the probe. After flow establishment,
the standard deviation in the measured Pitot pressure from the mean value over the
steady flow period is less than 1%. In three further Pitot-probe experiments, deviations
between 1 and 2% were recorded.

Also shown in both plots of figure 3 is a dashed line indicating the theoretical value
of the Pitot pressure determined from the free-stream conditions and the Rayleigh-Pitot
formula. The theoretical result differs from the mean measured value over the entire
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Figure 3. A sample Pitot pressure trace of the test-section flow: (left) showing the complete
steady flow time of the tunnel; (right) showing the typical test duration employed in the present
experiments. The dashed line in both plots indicates the theoretical Pitot pressure derived from
the fill conditions.

steady flow period by 1.2%, and by 0.7% between 5 and 20ms. In the other three Pitot-
probe experiments, discrepancies of less than 0.5% were obtained, indicating that the
theoretical estimates of the free-stream quantities give good approximations to the actual
experimental values.

2.3. Model arrangement

The test articles in this study were spheres manufactured of Nylon 6/6, ranging in diam-
eter from 6.35 to 25.4mm. Several methods of mounting the spheres in the test section
were trialled, the intent being to provide a weak suspension that would be detached and
swept away during the flow start-up period while imparting a minimal impulse to the
spheres. The most effective solution of those tested was to suspend each sphere by dental
floss from the test section roof, with the attachment formed by melting a single fibre from
the frayed floss end to the Nylon body; this ensured the weakest part of the suspension
was the link between the body and the tether. Two threads in a V-arrangement were
attached to the primary sphere, and a single thread to the secondary sphere. Excres-
cences of less than 100µm remained on the sphere surfaces after release. A sequence of
shadowgraph images showing the start-up of the flow and the detachment of the threads
is presented in figure 4. The arrival of the initial shock and the contact surface are visible
in the second and third images, respectively. The thread detachment is completed within
1ms of the initial shock arrival at the spheres.

2.4. Visualization setup and tracking technique

A “focused” shadowgraph optical set-up, consisting of a conventional Z-type Schlieren
arrangement with the knife-edge removed (Settles 2006), was utilized in this study, the
intent being to minimise the influence of the visualised flow features on the tracking tech-
nique to be described shortly. The focal lengths of the concave mirrors and the focusing
lens were 1.5m and 75mm, respectively. The light source was a Ostar four-chip 4000K
colour temperature LED mounted to a surplus air-cooled heat sink, driven continuously
by a Harrison Laboratories 6267a DC Power Supply. Images were recorded with a Vision
Research Phantom V7.1 SR-CMOS monochrome high-speed camera at a resolution of
512×304 pixels; the image magnification was such that a 25.4-mm diameter sphere (as
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Figure 4. Sequence of images showing the start-up of the flow and the detachment of the
threads from the spheres, at times (defined from the arrival of the initial shock): -0.08, 0, 0.54,
0.77, 1.00, and 1.23ms.

was generally used for the primary body) had an image diameter of approximately 76
pixels. The frame rate and exposure time were 13 kfps and 2-3µs, respectively.

The sphere displacements, velocities and accelerations during separation were deter-
mined through a visualization-based tracking technique. This technique, employed in a
basic form in Laurence et al. (2007) and subsequently refined in Laurence & Karl (2010)
and Laurence (2012), may be summarised as follows. For each image in the recorded
sequence, a pixel-resolution Canny edge-detection (Canny 1986) is performed (the stan-
dard deviation of the Gaussian filter in the edge detection here was 0.8 pixels) and a
semi-automated edge-tracing algorithm is used to select the edge points corresponding
to each of the sphere outlines. These edge points are then reprocessed using a subpixel-
resolution detector, and the sphere centre-of-mass position, (x0, y0), and radius, r, in
image coordinates are determined by fitting a circle in the least-squares sense to the
calculated points. A-priori knowledge of the physical sphere radii then allows the x0 and
y0 curves to be converted into physical displacements. Velocities and accelerations can
be obtained by numerically differentiating the displacement curves; the resulting ampli-
fication of measurement noise, however, usually means that some form of smoothing is
subsequently required, especially for accelerations. Alternatively, if either the velocity or
the acceleration is assumed to be constant over a certain time period, polynomials of
first or second order can be fitted to the displacement profiles to yield mean quantities.
The reader is referred to Laurence & Karl (2010) and Laurence (2012) for further details
of the technique. In the experimental results presented in § 4, time-resolved velocities
are derived from the displacement profiles by second-order central differencing, followed
by smoothing with a 5-point moving-average filter. The accelerations (from which the
force coefficients are derived) are obtained from a second-order central-difference approx-
imation to the second derivative of the displacement data, followed by three consecutive
applications of a moving-average filter of widths 15, 9, and 7 points, respectively.

In the present application, an additional improvement to the tracking technique was
the introduction of a correction for optical distortions, described in Appendix A. To es-
timate the technique precision, for each experiment a quadratic polynomial was fitted
to the displacement of the primary sphere over the time period that it was outside the
domain-of-influence of the secondary sphere, and thus subject to a constant acceleration.
We assume that the precision corresponds to the standard deviation of the residuals to
this quadratic fit. For a 25.4-mm diameter sphere, a typical value of 2-3µm was found
(corresponding to 0.006-0.01 pixels); this number can be expected to rise to around 6µm
for a 6.35-mm diameter sphere. Although a higher accuracy of ∼1µm was obtained for
sphere measurements under calibrated conditions by Laurence (2012), the present esti-
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mate is consistent with both the smaller image sphere diameter and the more challenging
experimental conditions.

2.5. Analysis of experimental errors

In this subsection we attempt to characterise both the uncertainties in the experimentally
measured quantities and the deviations of the experiments themselves from the model
problem of the study, i.e., that of two initially contiguous spheres released instantaneously
and with zero relative velocity in a steady flow. The quantity of principal interest here
is the non-dimensional lateral velocity, v′y =

√

ρm/ρavy/V ; thus, we wish to determine
the uncertainties in the quantities in this non-dimensional term, as well as those in the
independent parameters that are varied in the investigation, namely the radius ratio,
r2/r1, and the initial alignment angle between the sphere centres, θ0.
The diameter and mass of both spheres were measured before each experiment; the

precision of the Vernier caliper used for the diameter measurement was 12.7µm. Over
all measured spheres, the maximum deviation recorded in the diameter from its nominal
value was 25µm, giving a maximum discrepancy in the radius ratio ranging from 0.14%
for r2/r1=1 to 0.6% for r2/r1=0.25. The measured diameters and masses were used to
determine the average sphere density, ρm; this average value, rather than individually
measured values, was used in determining each v′y. Over all spheres, a mean value of
1.122×103 kg/m3 with a standard deviation of 0.4% was obtained. The uncertainty in
ρm (i.e., the 95% confidence value) is thus estimated as 0.8%.

As we have seen in § 2.2, the discrepancy between the measured and theoretically es-
timated free-stream Pitot pressures and the variation in the measured Pitot pressure
during the test time were typically less than 1% and 2%, respectively; 95% confidence
intervals for these quantities (the former using the t-distribution to account for the small
sample size) are estimated as 1.6% and 3%. Since the Pitot pressure scales as approxi-
mately ρaV

2, the corresponding errors in v′y from these free-stream uncertainties will be
half the values just quoted. These estimates are also consistent with measurements of
the drag coefficients of the primary spheres during the constant-acceleration periods of
their trajectories (the same periods used in the precision estimates described in the last
paragraph of the previous subsection), in which a standard deviation of 1.1% was found.

From the displacement measurement precision estimated in the previous subsection,
the precision in vy (95% confidence) varies from approximately 0.03m/s for 25.4-mm
diameter spheres to 0.06m/s for 6.35-mm diameter spheres; corresponding values for the
non-dimensional velocity, v′y, are 0.006 and 0.012, respectively. In Appendix A, it is shown
that distortions in the optical setup can lead to systematic errors in vy of over 1.5%, but
with the applied distortion correction, this error is estimated to be less than 0.5%. The
alignment of the grid used for the correction was checked against the nozzle exit line,
and a misalignment of less than 0.02◦ in the x-y plane was found; any resulting errors
can be considered negligible. Additionally, imprecise initial alignment of the spheres in
the spanwise direction (i.e., parallel to the light path) will influence the measured lateral
velocity; however, the estimated precision of the alignment is of the order of 1◦, and even
a misalignment of 5◦ would lead to an error in vy of less than 0.4%.
Combining the uncertainties in ρm,

√
ρaV , and vy in the manner described in Moffat

(1982), we obtain overall uncertainties in v′y that depend on the values of both r2/r1 and
v′y itself: for v′y=0.2, the 95% confidence values for r2/r1=0.25, 0.5, and 1.0 are 6.3%,
4.6%, and 3.5%, respectively; for v′y=1.0, these values are 2.1%, 1.9%, and 1.8%. At the
lower velocity, the uncertainty in vy tends to be the dominant contribution, whereas at
the higher velocity the uncertainty in

√
ρaV dominates.

In addition to uncertainty in v′y, errors in the effective initial conditions, resulting
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from both the start-up period of the facility and the non-instantaneous detachment of
the supporting threads, will also be significant. To determine the impulse imparted by the
detaching threads, experiments were performed with a single sphere. The lateral impulse
imparted by the single thread suspension was estimated from the measured velocity pro-
files as approximately 0.12×10−4 Ns; the axial impulse could not be separated from the
flow-induced loading, but the thread angle during detachment suggested this to be neg-
ligible. For sphere diameters of 25.4, 12.7 and 6.35mm, this lateral impulse will give rise
to velocities of 0.013, 0.1 and 0.6m/s, respectively; the corresponding non-dimensional
velocities are 0.003, 0.02 and 0.12. The V-arrangement suspension, as employed for the
primary sphere, was found to impart a somewhat larger impulse: for a 25.4-mm sphere,
the resulting lateral velocity was typically 0.1m/s. Thus, the assumption of a negligible
initial relative velocity was best satisfied for r2/r1=0.5; for r2/r1 > 0.5 the spheres effec-
tively possessed a small negative initial relative velocity (i.e., towards one another) and
vice versa.

The influence of the flow start-up period on the effective initial conditions was esti-
mated in the following manner. At the end of the start-up period, the spheres will lie
in a particular relative configuration and will be carrying certain velocities. Assuming
this combination to be given and that both spheres were initially stationary, the effective
initial positions of the spheres will depend on the individual acceleration histories. In
particular, the initial positions for idealised step-function accelerations (as assumed in
the model problem of the study and implemented in the accompanying computations)
will differ from those for the actual experimental accelerations. We can quantify this
difference if we assume that the force coefficients (based on the instantaneous flow condi-
tions) are approximately constant during the start-up period and are proportional to the
measured Pitot pressure. These assumptions are supported by the observation that, in
figure 4, the flow structures are well-established within 1.0ms of the arrival of the initial
shock (compared to the entire start-up duration of approximately 3.5ms). Thus, using
a typical measured Pitot pressure history together with representative force coefficients,
we find that the spheres effectively travel further in reaching the same velocity for the
experimental acceleration histories, an effect that is more pronounced for smaller spheres.
This is caused by the more gradual onset of the experimental aerodynamic loading and
means that, in the idealized model problem approximated by a given experiment, the
secondary body has a slightly downstream and laterally separated initial position relative
to its actual physical position. This effective initial lateral separation is quite uniform for
different r2/r1, at 0.3mm or 0.02r1. However, the effective alignment angle discrepancy
resulting from the offset in the axial direction varies strongly with r2/r1: for r2/r1=0.25,
0.5 0.625, 0.75 and 1, the calculated angles are 4.5, 1.4, 0.8, 0.4 and 0◦, respectively.

3. Computational modelling

3.1. Numerical approach

As in Laurence & Deiterding (2011), we employ the Cartesian fluid solver framework AM-
ROC (Deiterding 2005b; Deiterding et al. 2005, 2007; Deiterding 2009, 2011b,a; Ziegler
et al. 2011) to simulate numerically the fluid-structure interaction of the free-flying spher-
ical bodies. The equations solved to model the inviscid compressible fluid are the Euler
equations in conservation-law form

∂tρ+∇· (ρ~u) = 0, ∂t(ρ~u)+∇· (ρ~u⊗~u)+∇p = 0, ∂t(ρE)+∇· ((ρE+ p)~u) = 0. (3.1)

Here, ρ is the fluid density, ~u the velocity vector, and E the specific total energy. The
hydrostatic pressure p is given by the polytropic gas equation, p = (γ− 1)(ρE− 1

2
ρ~uT~u).
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Figure 5. Cuts through part of the computational domain of setup 5 described in table 1 at
t = T + 6.4151, visualising the mesh adaptation around the two bodies together with the shock
waves on the cut planes. Two additional levels of refinement with l1,2 = 2 are used.

We approximate (3.1) in three space dimensions using a discretely conservative Carte-
sian finite-volume discretisation built on dimensional splitting. The flux vector splitting
approach by Van Leer is used to evaluate an upwinded numerical flux at cell interfaces;
the MUSCL-Hancock reconstruction technique with Minmod-limiter is employed to con-
struct a high-resolution method that is of second-order approximation accuracy away
from shocks and contact discontinuities, cf. Deiterding (2003).
The spherical bodies are represented on the Cartesian mesh with a scalar level-set func-

tion, ϕ, that stores the signed distance to the nearest point on either sphere surface to
each finite-volume cell centre. For non-overlapping spheres, the evaluation of ϕ is straight-
forward and we adopt the convention ϕ > 0 in the fluid domain and ϕ < 0 inside the solid
bodies. By utilising the sign of ϕ, the first layer of cells inside each body can be identified;
the vector of state in these cells is then adjusted to model the relevant non-Cartesian
boundary conditions, i.e., a rigid sphere moving with velocity ~v, before applying the unal-
tered Cartesian finite-volume discretisation. The last step involves the interpolation and
mirroring of ρ, ~u, and p across the sphere boundary and the modification of the normal
velocity in the immersed boundary cells to (2~v · ~n− ~u · ~n)~n, with ~n = ∇ϕ/|∇ϕ|, cf. Deit-
erding (2009). The benefit of this immersed-boundary, aka “ghost fluid” method (Fedkiw
et al. 1999) is the natural incorporation of moving bodies. However, the approach usu-
ally reduces the approximation accuracy along the immersed boundary, in the present
implementation to first order. We mitigate this error by applying automatic, dynamic
mesh adaptation along ϕ = 0 and additionally to important flow features, specifically
to gradients larger than a certain threshold in the fluid density. A representative snap-
shot of part of the evolving adaptive mesh from one simulation is visualised in figure 5.
The adopted mesh adaptation method is the recursive block-structured algorithm for ex-
plicit finite-volume discretisations after Berger & Colella (1988), allowing simultaneous
adaptive mesh refinement (AMR) in time and space by the same factor, lj , for each addi-
tional level j. In AMROC, the AMR method is fully parallelised for distributed memory
machines, including automatic load-balancing and parallel re-partitioning as the mesh
refinement hierarchy changes throughout a computation (Deiterding 2005a).
In the simulations described hereinafter, the spheres are always fully enveloped by
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# Base grid l1 l2 ∆xmin Steps Time [h] Cores CPU [h]

1 150× 125× 90 1 1 0.0200 6,131 7.2 128 918
2 225× 188× 135 1 1 0.0133 9,245 16.8 128 2,151
3 150× 125× 90 2 1 0.0100 12,298 40.4 128 5,176
4 150× 125× 90 3 1 0.0067 18,522 72.4 128 9,271
5 150× 125× 90 2 2 0.0050 24,704 143.8 256 36,808
6 150× 125× 90 2 3 0.0033 37,176 318.3 256 81,474

Table 1. Computational parameters of the verification study. Six configurations of
successively increasing refinement are investigated.

cells at the highest level of mesh adaptation, and no exchange of kinetic energy by direct
contact is allowed to take place. The hydrodynamic force, ~f , on each body is updated
after every highest-level time step by integrating the pressure over the body surface, for
the purpose of which spherical longitude-latitude grids are temporarily constructed. The
position of each sphere’s centre, ~x, is then updated by advancing the equation of motion,
~̈x = ~f/m, with mass m = 4

3
πr3ρm. Finally, the level set function is re-calculated taking

into account both spherical bodies.

3.2. Model verification

In order to demonstrate the accuracy and computational performance of the numerical
model, in this subsection we discuss in detail a series of consecutively refined computa-
tions for a specific case, corresponding to the experiment visualized in figure 9c. Since
it is the non-dimensional results that are ultimately of interest, some freedom exists in
setting up the problem. In order to provide a benchmark case, we describe the actual
configuration simulated.

We study the problem at hand in a Galilean frame of reference and use a computational
domain of size [0, 3]× [0, 2.5]× [0.1, 1.9]. The spheres have radii r1 = 0.2, r2 = 0.125 and
their centres are initially located at (0.35, 1, 1) and (0.3542, 1.3250, 1), respectively. The
density of both bodies is set to ρm = 2800 (note that, provided the sphere velocities
remain much smaller than the flow velocity, the non-dimensional results are independent
of the value of ρm/ρa). By specifying ρa = 1.4, γ = 1.4, uniform initial conditions
ρ0 = ρa, ~u = 0, p0 = 1, and inflow conditions with ρi = ρa and pi = 1, the magnitude of
the inflow velocity vector becomes identical to the Mach number. A ~Vi = (4, 0, 0) inflow
is prescribed at the left domain boundary; outflow boundary conditions are applied at
all other sides. For t < 0.25, the inflow velocity is continuously increased by specifying
~Vi(1 − exp(−t/0.05)) as the boundary condition; for t > 0.25, a constant value of ~Vi is
used. The computation is separated into two parts: during the interval t = [0, T ] the
spheres are held stationary and a quasi-steady flow field is established; for t > T the
two bodies are allowed to move freely according to the experienced forces. The present
computation uses T = 6 and a final simulated time of te = T + 16.

The verification study consists of six simulations with progressively increasing reso-
lution; the relevant computational parameters are provided in table 1. Setups 1 and 2
use uniform grids; setups 3 and 4 employ one additional level of mesh adaptation with
refinement factors of 2 and 3; setups 5 and 6 use two additional refinement levels with
l1 = 2 and l2 equal to 2 and 3, respectively. All computations employ automatic time-
step adjustment based on a CFL (Courant-Friedrichs-Levy) condition number of 0.9.
The computations were run on an IBM BG/P machine, using 128 or 256 processor cores.
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Figure 6. Time-resolved secondary force coefficients calculated in the six verification compu-
tations described in table 1, with the lightest to darkest curves corresponding to simulations 1
through 6.

Setup 1 completed in ∼ 7.2 hours wall time (∼ 918 CPU hours). The largest run, setup 6,
computed continuously for almost 2 weeks, requiring ∼ 81, 474 CPU hours. Although this
number might appear large, the savings from utilising mesh adaptation are considerable:
a uniform computation with the effective resolution of setup 6 would be 64 = 1296 times
more expensive than setup 1. Multiplying the setup-1 CPU time yields 1, 189, 728 hours,
or a potential saving from using AMR of a factor ∼ 14.6.

In figure 6 are plotted the secondary drag and lift coefficients versus the computational
time for the six simulations in the verification study. Significant oscillations are observed
in the profiles from the coarser simulations: these are caused by the effective change
in the body geometry as it moves through the Cartesian computational grid, since the
surface of the body is only resolved to the grid resolution. A general trend for the force
coefficients to decrease in magnitude with increasing refinement is observed. This can be
attributed to a decrease in the lateral primary bow-shock displacement as the resolution
is increased, as noted in the refinement study of Laurence et al. (2007). In the present
case, this will lead to an effective increase in the lateral displacement of the secondary
sphere relative to the primary shock, resulting in a more rapid expulsion and giving rise
to the observed trends in the force coefficients. Overall, adequate convergence under grid
refinement can be inferred from figure 6. Tabulated results from the verification study
can be found in the online supplementary material.

The standard configuration for the numerical simulations that are compared to exper-
iments in § 4.2 is a two-level computation with l1,2 = 2, as in setup 5. Analysis of the grid
refinement results suggests that this particular setup evaluates the lateral velocities of
the secondary and primary bodies with deviations of less than 3% and 2.5%, respectively,
from the fully converged values. Exemplary flow visualisations from simulation 5 are pre-
sented in figure 7. The left image shows planes of pseudo-Schlieren (i.e., velocity gradient
magnitude) images perpendicular to the coordinate axes through the sphere centres; the
right image visualises the embedded domains covered by the first and second refinement
levels using different grey scales, onto which local pseudo-Schlieren visualizations are ad-
ditionally overlaid. To visualise the dynamics of the separation process, two colour MPG
movies corresponding to the images of figure 7 are included as multimedia attachments
to the paper. For reference, these movies additionally display the computational time, t,
and the x- and y-coordinates of the sphere centres throughout the entire simulation.

As a first validation result, in figure 8 we compare an experimental visualisation to
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Figure 7. Schlieren plots of density (left) and domains of the two additional AMR levels
(right), indicated by different grey scales, for t = T + 8.974 in the setup 5 simulation.

Figure 8. Comparison of experimentally and computationally (setup 5, t = T +7.8367) derived
visualisations of the gradient of the fluid density in the y-direction. In the experimental image,
the gradient has been effectively integrated through the fluid domain in the z-direction, while
the computational image shows the gradient only on the central plane, z = 1.

a similar image derived from simulation 5. For this single experiment, Schlieren images
were obtained through the introduction of a horizontal knife-edge, enabling better visu-
alisation of weak features such as the separation regions behind the two spheres. This is
intended simply as a qualitative comparison of flow fields, since the configurations are not
identical. Moreover, the numerical image visualizes the density gradient in the y-direction
only on the central plane, z=1, rather than integrating through the fluid domain; thus,
three-dimensional features such as the deflected primary bow-shock downstream of the
shock-shock interaction are visible in the experimental image but not in the numerical
one. The experimental configuration shows earlier flow separation on the rear primary
surface, which can be explained by the lack of physical viscosity in the computational
model. However, as the aerodynamic forces at this Mach number are dominated by the
pressure contribution on the forebody (see, for example, Hoerner 1965), the differing
separation points should have only a minor effect on the experienced forces. Aside from
this discrepancy, the qualitative flow features show good agreement: in particular, both
images clearly show that the flow in the primary wake region does not interact with the
bow shock ahead of the secondary body.
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(a) r2/r1 = 0.25, θ0 = 0.4◦

(b) r2/r1 = 0.5, θ0 = −0.1◦

(c) r2/r1 = 0.625, θ0 = −0.7◦

(d) r2/r1 = 0.75, θ0 = −1.1◦

(e) r2/r1 = 1.00, θ0 = −0.6◦

Figure 9. Separation behaviour for configurations with various radius ratios and (approximate)
initial alignment of the sphere centres in the axial direction. The duration between the first and
last image varies between sequences, but is typically around 12ms.

4. Results and discussion

4.1. Qualitative separation behaviour

The two parameters varied in the experimental investigation were the radius ratio, r2/r1,
and the initial alignment angle between the sphere centres, θ0. In figures 9 and 10 are
shown sequences of shadowgraph images from experiments in which each of these two
parameters was varied independently of the other. First, in figure 9, we see the effect of
varying the radius ratio while the sphere centres are kept initially aligned (to within 1◦)
in the axial direction. Here the convention adopted for the alignment angle is that θ0=0
corresponds to exact axial alignment of the sphere centres, with θ0<0 indicating that the
secondary sphere centre initially lies downstream of the primary centre. Systematically
increasing r2/r1, the behaviour transitions from immediate entrainment of the secondary
sphere within the flow region bounded by the primary shock (r2/r1 = 0.25), to limited
surfing followed by entrainment (r2/r1 = 0.5), extended surfing (r2/r1 = 0.625), rapid
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(a) r2/r1 = 0.5, θ0 = −1.9◦

(b) r2/r1 = 0.5, θ0 = 4.1◦

(c) r2/r1 = 0.5, θ0 = 22.8◦

Figure 10. Separation behaviour for configurations with a constant radius ratio and varying
initial alignment angles.

expulsion of the secondary sphere from the region bounded by the primary shock (r2/r1 =
0.75), and finally symmetrical separation (r2/r1 = 1). Qualitatively, this is consistent
with the behaviour observed at higher Mach numbers by Laurence & Deiterding (2011).
Comparing the trajectories for r2/r1=0.5 and 0.625, it is apparent that the critical radius
ratio delineating entrainment from expulsion lies somewhere between these two values.

Now comparing the sequences in figure 10, the effect of varying only the initial align-
ment angle may be seen, in this case for r2/r1=0.5. Moving the initial secondary position
forward relative to the primary sphere (i.e., increasing θ0) produces a similar effect to
increasing the radius ratio, since in either case the secondary body is effectively shifted
further outside the primary bow-shock. For θ0=-2◦, the secondary sphere becomes en-
trained, slightly more quickly than in the θ0=0 case seen in figure 9b. Increasing the
alignment angle to 4◦ results in extended surfing of the secondary body, and it is not
clear when the body leaves the visualization window whether it will be ultimately en-
trained or expelled. Increasing θ0 further to 23◦ leads to a trajectory similar to that for
r2/r1=0.75, θ0=-1.1◦ (shown in figure 9d), with the secondary body separating rapidly
in the lateral direction and soon leaving the influence of the primary shock.

4.2. Comparison of experimental and computational results

In this subsection, we compare results from selected experiments and corresponding nu-
merical simulations. In figure 11, computational pseudo-Schlieren images are shown for
r2/r1=0.625, θ0=-0.7◦, i.e., the configuration of the verification study of § 3.2. For com-
parison, equivalent experimental sphere positions have been overlaid, with the sphere
radii reduced by 10% for clarity. The experimental positions have been adjusted to ac-
count for the influence of gravity, as is the case for all experimental results presented
hereinafter. The non-dimensional time, t′ =

√

ρa/ρmtV/r1, has been matched between
computation and experiment; the respective t′=0 points (i.e., corresponding to t = T
in the notation of § 3) were determined in a manner outlined shortly. Images a, b and
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Figure 11. Computational Schlieren images for r2/r1=0.625, θ0=-0.7◦, with equivalent exper-
imental sphere positions (corrected for gravity) overlaid; the experimental radii are reduced by
10% for clarity. Images a, b and d correspond to the experimental images of figure 9c.

d correspond to the experimental images of figure 9c. A movie comparing the entire
separation is included online. Qualitatively, agreement between the sphere trajectories is
good, and the experimental shock structures are accurately reproduced by the computa-
tion. However, there is some quantitative disagreement in the sphere positions. The first
discrepancy appears in the lateral position of the primary sphere, with the experimental
body separating to a lesser degree. The relative trajectories of the secondary spheres are
subsequently affected: the experimental sphere is pushed further outwards laterally and
also accelerates more rapidly in the axial direction (these effects can be attributed to the
increased lift and drag coefficients experienced by a secondary sphere as its position is
moved inwards from the free-stream towards the primary bow-shock - see Laurence &
Deiterding 2011). The most likely explanation for the initial discrepancy in the primary
sphere motion is the lateral impulse imparted by the detaching threads, as discussed
in § 2.5.

In figure 12, we compare force coefficients for r2/r1=0.5, θ0=-0.1◦ (i.e., the experiment
shown in figure 9b). Comparisons of additional non-dimensional quantities for this config-
uration can be found in the online supplementary material. In the numerical simulation,
the instant at which the spheres are released is precisely specified; in the experiment,
however, the corresponding release instant is not well-defined due to the finite duration
of the flow start-up. As the measured velocities provide the clearest indication of the
initiation of the sphere motion, the experimental t′ = 0 point is chosen such that the
initial axial velocity profiles of the primary sphere match as closely as possible. After
the flow start-up period (t′>1.5), the numerical simulation underestimates the primary
drag coefficient by approximately 1.5%, which can be attributed to the lack of viscous
contributions in the computation. We do not expect to obtain agreement in the force
coefficients during the start-up period, as the flow conditions have not yet reached the
steady values assumed in the derivation of the experimental coefficients. The secondary
drag profiles exhibit larger discrepancies than the primary profiles, the computational
curve lying approximately 6% lower from t′=1.5 to 3.5. This is not surprising, however,
considering that the secondary force coefficients will be much more sensitive to the exact
relative positions of the spheres, especially in the later stages of the separation when
the primary sphere is outside the domain-of-influence of the secondary sphere. The lift
profiles of the primary sphere also show some discrepancy: this appear to result primarily
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Figure 12. Comparison of experimental and computational force coefficients for r2/r1=0.5
and θ0=-0.1◦: —�—, experimental primary sphere; —, computational primary sphere; – –⋄– –,
experimental secondary sphere; – – –, computational secondary sphere. The normalised variables
are t′ =

√

ρa/ρmtV/r1, CD = 8axr/(3ρaV
2) and CL = 8ayr/(3ρaV

2).

from a deficit in the repulsive force experienced during the flow start-up, again consistent
with the impulse imparted by the threads during detachment. The secondary lift curves
show good overall agreement.

As the secondary lateral velocity is the quantity of principal interest here, in fig-
ure 13 we compare time-resolved non-dimensional lateral velocities from experiments
and numerical simulations for the five configurations shown in figure 9. Agreement for
the smallest radius ratio, r2/r1=0.25, is poor. This is because of the low mass of the
secondary sphere (0.15 g), which gives rise to both a significant discrepancy in the ef-
fective initial alignment angle and a large impulsive velocity imparted by the detaching
threads, as discussed in § 2.5. Agreement for r2/r1=0.5 and 1 is very satisfactory, both
in the time development of the velocity profiles and in the maximum velocities attained.
Slightly larger discrepancies are observed for r2/r1=0.625 and 0.75: although each shows
good agreement initially, in the later stages of motion the computational lateral veloc-
ity decreases more rapidly than in the experiment, indicating that the computational
secondary sphere is being expelled earlier from the flow region bounded by the primary
bow-shock. The origin of this discrepancy for r2/r1=0.625 has already been discussed in
association with figure 11, and the observations made there also apply to r2/r1=0.75.
Nevertheless, agreement for these two cases can be considered adequate.

We note that for r2/r1=0.25 and 0.5, the lateral acceleration becomes negative once
the secondary sphere is fully entrained within the region bounded by the primary bow-
shock, indicating that the lateral force is attractive here. This was predicted theoretically
by Laurence et al. (2007) and is due to the decreasing Pitot pressure moving inwards
from the bow-shock towards the axis-of-symmetry of the primary sphere. Thus, the lateral
velocity of an entrained secondary sphere reaches a well-defined maximum.

Summarizing these results, with the exception of the r2/r1=0.25 case, the overall agree-
ment observed between experiment and computations is satisfactory. In particular, we
conclude that neither the flow start-up period in the experiments nor the lack of physical
viscosity in the numerical simulations are significant obstacles to obtaining meaningful
quantitative results in the present investigation.
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Figure 13. Normalised secondary lateral velocities as functions of the non-dimensional time in
experiments (symbols) and numerical simulations (lines only in matching shades):�, r2/r1=0.25;
◦, r2/r1=0.5; △, r2/r1=0.625; ⋄, r2/r1=0.75; ⊳ r2/r1=1.

4.3. Parameterised separation velocities

We now consider the quantitative variation in the secondary separation velocity as a
function of the two independent parameters, θ0 and r2/r1. In figure 14, the normalised
separation velocity, V ′

T , is plotted versus the initial alignment angle for five radius ratios:
r2/r1 = 0.25, 0.5, 0.625, 0.75, and 1. V ′

T , is defined here as the maximum value of v′y2
attained during the trajectory. In the left graph are plotted directly measured values: solid
points indicate cases in which the secondary sphere was either entrained or completely
expelled within the visualized trajectory; open symbols indicate that the secondary sphere
was still being repulsed when it left the visualization window. In order to estimate the
final velocity that would result in these latter cases, the lateral acceleration curves were
linearly extrapolated based on the final 3.5ms of visualized flight. The final separation
velocities were then taken as the values when these extrapolated accelerations became
zero; these results are shown in the right plot of figure 14.

For r2/r1=1, V ′

T shows only a weak dependence on the alignment angle, increasing from
0.19 for θ0=15.8◦ to 0.25 for θ0=-9.9◦. In all of these experiments, the trajectories of the
two spheres took them completely outside the influence of one another’s bow-shock. For
r2/r1=0.75, a stronger effect of the alignment angle is observed, with V ′

T increasing more
markedly with decreasing θ0. Again, however, no secondary entrainment was obtained
over the range of initial angles considered (-13.2 to 16.4◦), indicating that the critical
alignment angle delineating entrainment from expulsion for this radius ratio is less than
-13◦. For r2/r1=0.625 and 0.5, a well-defined maximum in V ′

T is clearly reached within
the range of θ0 considered: for r2/r1=0.5 this occurs at approximately θ0 = 4.1◦, and
for r2/r1=0.625 somewhere between -6.2 and -0.7◦. As θ0 is decreased from this critical
value, a transition to entrainment occurs and V ′

T drops monotonically. For r2/r1=0.25,
the secondary sphere was entrained for the three smaller alignment angles and barely
expelled at the maximum angle considered (31.6◦), indicating that the critical angle lies
slightly below this value. The peak separation velocity attained over all alignment angles
is seen to increase with decreasing radius ratio, which can be explained by the higher
acceleration experienced by a body of smaller mass, all other things being equal.
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Figure 14. Normalised experimental separation velocities of the secondary body as functions of
the initial alignment angle with the primary body: ◦, r2/r1=0.25; �, r2/r1=0.5; △, r2/r1=0.625;
⋄, r2/r1=0.75; ⊳, r2/r1=1. Open points indicate that the secondary body was still being influ-
enced by the primary shock when it left the visualization area: in the left plot these points are
the directly measured values, whereas in the right plot the velocities have been extrapolated.

In figure 15, the normalised separation velocity is plotted as a function of the radius
ratio for axially aligned initial configurations (here |θ0| < 1.5◦); for r2/r1=0.625 the ex-
trapolated velocity is used. In addition to the experimental values, we show numerical
results from both the refined computations discussed in § 4.2, in which the same align-
ment angles as in the experiments were specified, and more extensive coarse simulations
in which the alignment angle was set uniformly to θ0=0. For the latter, only a single level
of grid refinement of factor 3 was employed, and the density ratio, ρm/ρa, was half the
value of the more refined computations. As was noted of the qualitative secondary be-
haviour in § 4.1, the effect of increasing the radius ratio on V ′

T is similar to that of making
the alignment angle more positive. As we increase r2/r1 from 0.25, V ′

T rises sharply until
a maximum is reached at the critical ratio, predicted by the coarse simulations to lie at
approximately 0.58; thereafter, V ′

T drops away steeply to a value of 0.24 for r2/r1=1. This
general behaviour is again similar to that observed at higher Mach numbers by Laurence
& Deiterding (2011). Comparing the experimental separation velocities with those from
the refined numerical simulations, the results are as would be expected from an exami-
nation of figure 13. For the smallest radius ratio, r2/r1=0.25, the experimental value is
significantly higher because of the low mass of the experimental secondary sphere; an
identical secondary sphere was employed for the r2/r1=0.4 experiment, and a similar
discrepancy with the coarse numerical result is observed. For r2/r1=0.5 and 1, the ex-
perimental and refined numerical results lie very close to one another (with differences
of 1.3% and 1.1%), but the discrepancies at radius ratios of 0.75 and 0.625 are somewhat
larger, at 6% and 11%, respectively (though in the latter case, the extrapolation of the
experimental result may have exaggerated this difference somewhat.) A likely explanation
for these differences has been discussed in reference to figure 13. Also shown in figure 15
is the scaling law of Passey & Melosh (1980), as given by (1.1). Poor agreement with the
experimental and numerical results is observed.

4.4. Effect of Mach number

It is clear from comparing the results in figure 15 to those in figure 18 of Laurence &
Deiterding (2011) that the separation behaviour is qualitatively similar over the range of
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Figure 15. Normalised secondary separation velocities versus the radius ratio for initial axial
alignment of the sphere centres: �, experimental results; △, refined computational result with
identical initial alignment angles to experiments; ◦, coarse computational result with θ0=0; – – –,
prediction of Passey & Melosh (1980). Open points indicate extrapolated values.

Mach numbers considered in the two works (M=4, 10 and 25). It is thus of interest to
consider what quantitative differences might exist between the supersonic Mach number
considered here and the hypersonic Mach numbers of the earlier study. In the left plot
of figure 16 we show normalised separation velocities versus the radius ratio for four
Mach numbers, all with θ0=0: results for M=10 and 25 are taken from Laurence &
Deiterding (2011), the coarse-grid M=4 results from figure 15 are again shown, and an
intermediate Mach number of 6 is also included. With the exception of the Mach number,
all significant parameters in these computations (e.g., grid resolution, density ratio) were
identical, allowing the Mach-number effects to be isolated.

Each of the profiles shows the distinctive peak in separation velocity at the critical
radius ratio, with a rapid falling off to either side. It should be noted that the M=4 peak
is extrapolated; for the M=10 peak, the lateral acceleration was still increasing when the
secondary sphere left the computational domain, and thus a linearly extrapolated velocity
could not be calculated. The value of the critical ratio varies between the different Mach
numbers, increasing from approximately 0.45 for M=25 to 0.58 for M=4. This variation
can be at least partially explained by the growing lateral displacement of the primary
bow-shock with decreasing Mach number: for a larger shock-radius, the secondary sphere
will effectively lie further inside the shock at the same initial position, hence a larger
radius ratio will be required to achieve the same degree of repulsion. Therefore, in an
attempt to scale out the effect of the primary bow-shock location, in the right plot of
figure 16 we present the same velocity data, but with the abscissa now the scaled distance
(r1 + 2r2)/Rs, where Rs is the radial location of the primary bow-shock (at the initial
axial location of the sphere centres) as given by the correlation of Billig (1967). This
modified abscissa is thus the initial lateral location of the outer secondary sphere edge,
normalised by the bow-shock displacement. With this choice of scaling the curves collapse
much more closely upon one another, indicating that the Mach-number effect observed
in the left plot of figure 16 is indeed caused primarily by differences in the effective initial
position of the secondary sphere relative to the primary bow-shock. This collapsing also
suggests that the dominant physical phenomena are qualitatively similar over the range
of Mach numbers considered.
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Figure 16. Computed normalised separation velocities of the secondary body for different Mach
numbers, assuming initial axial alignment of the sphere centres (θ0=0): ⋄, M=4; �, M=6; ◦,
M=10; △, M=25. In the left plot, the velocity data is plotted against the radius ratio; in the
right plot, the abscissa is the initial lateral location of the outside edge of the secondary sphere
normalised by the lateral primary bow-shock displacement at the relevant Mach number.

5. Conclusions

We have carried out an extensive experimental investigation of the dynamical separa-
tion characteristics of two initially contiguous spherical bodies in supersonic flow (M=4).
In general, the behaviour was found to be similar to that observed analytically and com-
putationally at hypersonic Mach numbers (Laurence & Deiterding 2011). For small radius
ratios, the secondary sphere is likely to be entrained within the flow region bounded by
the primary bow-shock, whereas larger secondary spheres show an increased tendency
to be expelled from this region. The likelihood of entrainment increases as the initial
position of the secondary sphere is moved downstream relative to the primary sphere.
At a critical alignment angle for a given radius ratio (or a critical radius ratio for a
given alignment angle), the secondary sphere “surfs” the primary bow-shock, tracing a
trajectory so as to follow the shock downstream. This critical angle or radius ratio effec-
tively delineates entrainment from expulsion and also results in the maximum separation
velocity with respect to the varied parameter. For r2/r1=0.5, a critical initial alignment
angle of approximately 4◦ was found (with the secondary sphere centre lying upstream
of the primary sphere centre); this critical angle varied markedly with the radius ratio,
increasing from less that -13◦ for r2/r1=0.75 to approximately 30◦ for r2/r1=0.25. For
initial axial alignment of the sphere centres, a critical radius ratio of slightly less than
0.625 was deduced. This critical ratio is larger than that found for hypersonic perfect-gas
flows (approximately 0.45 for M>10), a difference that was attributed primarily to the
increased lateral displacement of the primary bow-shock at lower Mach numbers.

A visualization-based tracking technique allowed quantitative comparisons between
the experimental results and high-resolution inviscid numerical simulations. Generally
favourable agreement was obtained, the main exception being for a low-mass (< 1 g)
secondary body, in which case the start-up processes in the experimental facility played
a decisive role. Excluding this case, the final separation velocities of the computational
and experimental secondary spheres showed agreement to between 1 and 11%. This lends
a high degree of confidence to both the experimental and computational approaches
employed here.
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Figure 17. (Left) Images showing the transparent grid used to derive the correction polynomials
for optical distortions, and the sphere configuration for which the distortion error is quantified
in the accompanying plot. (Right) Distortion errors in the measured sphere edge points for the
primary body (lower profiles) and secondary body (upper profiles): ◦ uncorrected points; △
points with distortion correction applied. The anomaly in the corrected secondary profile at 90◦

is caused by the excrescence from the suspension thread.
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Appendix. Correction of distortion errors

In visualization-based measurement techniques, the distortion error associated with the
optical set-up can often be problematic. With regard to the technique employed in the
present work, optical distortions were noted by Laurence & Karl (2010), but their effect
on the tracking technique could not be quantified beyond a rough estimate. Here, with the
relatively large range of motion experienced by the spheres, such distortions were found
to become a significant factor, and an attempt was made to both characterize and correct
for the resulting errors. A transparent plate with circular dimples precision-machined at
25.4-mm intervals was placed inside the test section, and images were recorded with
the optical set-up employed for the sphere experiments. The visualized positions of the
dimples were determined using the tracking routine described in § 2.4 and compared
to a uniform grid. A third-order polynomial transformation between image coordinates,
(x̂, ŷ), and physical coordinates, (x, y), was then defined for each of x and y, e.g., x =
a+bx̂+cŷ+dx̂2+ex̂ŷ+fŷ2+gx̂3+hx̂2ŷ+ix̂ŷ2+jŷ3, and the coefficients were determined
by a least squares fit over all determined dimple positions.

With the coefficients for each of x and y thus calculated, the correction was incorpo-
rated into the tracking algorithm by applying it to the detected edge points prior to the
fitting of the circular profiles. Applying the transformation directly to the image would
also be possible, but would be more expensive computationally. A typical reduction in
the distortion of the sphere profiles enabled by this correction is shown in figure 17. The
deviation between the radii of the detected edge points and the overall fitted radius is
plotted here against the internal angle, φ, for each of the two spheres in the image shown
(normalised by the fitted radius in each case), for both the original and corrected edge
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Figure 18. Example of the effect of the distortions present in the optical system on the
measured lateral velocity of the secondary body: – – –, corrected; —, uncorrected.

points. The deviation for the larger sphere, which originally reaches 1%, is reduced by a
factor of approximately 10, while the reduction for the smaller sphere is by a factor of 6.
Furthermore, the root-mean-square (RMS) deviation in both cases is now approximately
0.03 pixels, which is close to the expected accuracy of the edge detection routine under
noisy conditions (Laurence & Karl 2010); or 10µm, which is near the quoted sphericity
of the spheres employed (13µm).

As the quantity of main interest in the present study is the lateral separation velocity
of the secondary body, in figure 18 is plotted an example of a time-resolved lateral
velocity profile, both with and without the distortion correction incorporated into the
measurements. The discrepancy between the two results is initially negligible, but grows
to 1.7% by the time the maximum lateral velocity is reached. As the correction employed
has already reduced the error in the sphere profile by a factor of 6, we can roughly estimate
the remaining velocity error to be of the order of 0.3%. Given the other experimental
uncertainties discussed in § 2.5, any further improvement to the distortion correction is
unlikely to offer significant benefits.
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