Modelling market participants and market designs in the process of market integration of renewable energies from an agent-based perspective

MOCAP Workshop - Potsdam Institute for Climate Impact Research 3th-5th October 2012

Matthias Reeg, German Aerospace Center – Department of System Analysis and Technology Assessment

Knowledge for Tomorrow

Static Equilibrium Economics

- Economic actors continually adjust their market moves (investments, prices, forecasts etc.)
- ✤ Individual behaviour collectively creates an aggregated outcome.
- **General equilibrium** theory asks: "What prices and quantities of goods produced and consumed are consistent with the overall pattern of prices and quantities in the economy's markets?" ¹)
- Game theory asks: "What strategies, moves or allocations would be the best course of action for an agent given the strategies, moves, allocations his rivals might choose?"¹⁾
- Rational expectations theory asks: "What expectations are consistent with the outcomes these forecasts and expectations together create?" ¹⁾

Supproaches follow the concept of **rational expectations/behaviour** under the paradigm of **perfect information**.

1) Arthur (2005) p. 1554

Out of Equilibrium Economics as Generative Approach

Characteristics of complex systems like carbon markets:

- Often not at equilibrium but under on-going change
- States are results of a multitude of small events and are not determinate up front ("Feedback-Loops")
- Economic actions depend on expectations and actions of others
- Strategic behaviour of market participants

Agent-based Modelling (ABM) or Agent-based Computational Economics (ACE) tries to analyse **the dynamics between** the equilibriums ("generative approach")^{1),2)}

- Includes inductive behaviour
- No a-priori "solution" \rightarrow learning by doing

SThe generative approach might converge to the rational expectations norm **but does not have to!**

1) Holland et al. (1986), 2) Sargent (1994)

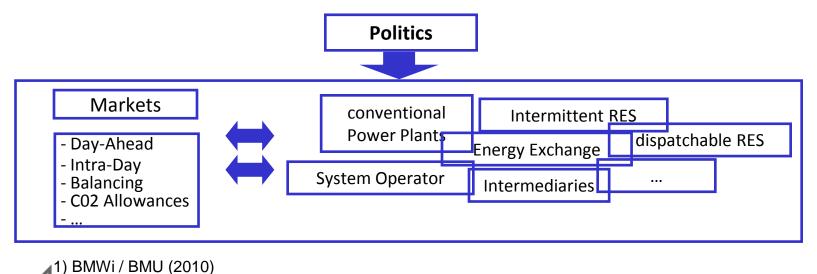
Basics of Agent-Based Modelling (ABM)

- Bottom-up Approach from the field of Artificial Intelligence (AI).
- Autonomous Agents acting in a changing environment.
- Event based simulation
- Typical characteristics of Agents^{1),2)}:
 - "World view" as internal representation of outside world
 - Autonomous behaviour with own goals
 - Development and adjustment of strategies through learning processes
 - Communication and cooperation

Sturning away from the general principle of the "homo oeconomicus":

- limited information and bounded rationality
- Heterogeneity of actors
- Taking into account of social processes.

Section 2018 Secti


1) Wooldridge (2002); 2) Schmidt (2000)

Energy Economic Background

- Reorganization of institutional, technical and financial aspects is needed to achieve political goals of the "Energiewende" (Energy Transition)¹⁾
 - GHG emissions: 80%
 - RES share: 80% of gross electricity consumption
- In this process of transition
 - a huge variety of actors from different social arenas is involved, which

by 2050

- are connected via complex interdependencies and
- react very differently to changes in the energy policy framework

AMIRIS - Our Agent-Based Modelling Approach

> Need for sound scientific policy advice for the energy transition

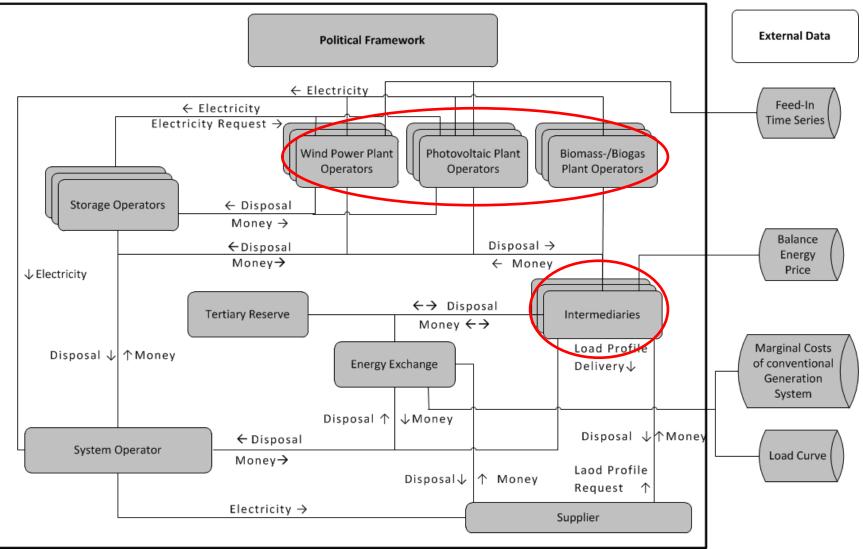
1

- We use advantages of ABM to model agents with:
- Autonomous behavior
- Own goals
- Adaptation of strategies
- Cooperation
- Imperfect knowledge
- Heterogeneity
- Prototyped market orientated behavior

We conduct sound actor analysis based on theoretical assumptions derived from sociological neo-institutionalism with:¹⁾

- Document analysis
- Semi-structured interviews
- Expert workshops

1) Performed by CIRIUS - University of Stuttgart


3

We build an agent-based Model as policy analysis and design tool to:

- Analyse impact on agents as result of changes in policy design (microeconomic effects)
- Analyse interdependencies and interactions of agents
- Analyse impacts on overall system (macro-economic effects)

AMIRIS Model Structure

Actor Analysis I - Intermediaries

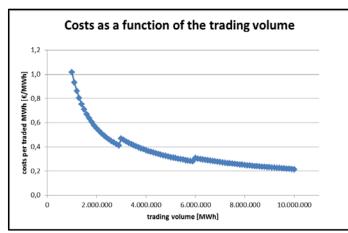
• Differentiation and parameterisation of agents:

	Prototype	Capital resources (m €)	Market premium	Green Electricity Priviledge	Bidding on Reserve Market	Tariff	Forecast quality	Searching cost for contract partners
(1)	Big national utility	100	2012	-	2012	FIT + Bonus	Good	Medium
(2)	International utility	15	2012	-	2012	FIT + Bonus	Good	Low
(3)	Big municipal utility	15	2012	-	2012	FIT + Bonus	Medium	Medium
(4)	Municipal utility "Pioneer"	15	2012	-	-	FIT + Bonus	Good	Low
(5)	Small municipal utility	7	2012	-	-	FIT + Bonus	Bad	Medium
(6)	Green electricity trader for households	7	-	2007	-	FIT + Bonus	Good	Low
(7)	Green electricity trader for business/industry	7	-	2008	2012	FIT + Bonus	Good	Low
(8)	Green electricity trader for local marketing	1	-	-	-	FIT + Bonus	Medium	-
(9)	Functional intermediary as spin-off from a big utility	3	2012	-	-	FIT + Bonus	Good	Low
(10)	Functional intermediary as start-up	0,1	2012	-	2012	FIT + Bonus	Medium	High

Intermediary Agents – Cost Structure

	Fixed costs					Variable costs		
1.	Office rent		133	€/a*m²	1.	EEX Trading fee	0,0075	€/MWh
2.	Office space factor:				3.	Specific labour costs (staff)	0,052	€/MWh
	Number of employees(E)	< 5	42	m²/E		Supervised volume / employee	1.250.000	MWh/E
		5 - 10	36	m²/E				
		10 - 20	35	m²/E	4.	Forecasting costs:		
		20 - 50	26	m²/E		Small portfolio	500-1500 MW	→ 15 €/MW
		> 50	25	m²/E		Medium portfolio	1500-3000 MW	→ 10 €/MW
3.	EEX access		25.000	€/a		Big portfolio	3000-5000 MW	→ 5 €/MW
4.	IT-/ Office equipment		10.000	€/a*E	5.	Forecasting quality:		
5.	Labour costs:					Good	\rightarrow purchased forecasts: 3	
	Trader		130.000	€/a*E		Medium \rightarrow purchased forecasts: 2		ecasts: 2
	Other staff 6		65.000	€/a*E		Bad → purchased forecasts: :		ecasts: 1

At end of each year: intermediary agents carry out balance check and calculate EBIT per employee.


According to EBIT the tariff is adjusted if necessary:

€ 200,000-300,000: bonus remains the same € 300,000-400,000: bonus is risen by 10 %

€ 100,000-200,000: bonus is lowered by 15 %

...

€ 50,000-100,000: bonus is lowered by 30 %

Actor Analysis II – Power Plant Operator

- Differentiated by received FIT remuneration
 - Each class represents a certain amount of installed capacity

€/MWh	Class 1	Class 2	Class 3	Class 4 (offshore)
2006	61,90	86,15	90,62	150,00
2020	59,31	84,21	91,14	173,91

- Further differentiated by owner structure:
 - Private persons
 - Farmers
 - Fonds
 - Project developers
 - Municipal utilities
 - Big utilities

- Characterized by:
 - Risk orientation
 - Return expectations
 - 1st, 2nd and 3rd Mover

Summery and Conclusion

- With ABM one can:
 - analyse the dynamics between equilibriums
 - turn away from the principal of the "homo oeconomicus"
 - cope with the heterogeneity of market participants
 - Analyse the macro as well as micro economic effects
- ABM is suitable for systems with:
 - complex interdependencies
 - on-going environmental changes
 - developing market structures
 - new/evolving market participants

♦ One can model in a more "realistic" way...

Thank you very much for your attention...

...Questions?

Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)

German Aerospace Center

Institute of Technical Thermodynamics | Systems Analysis and Technology Assessment Pfaffenwaldring 38-40 | 70569 Stuttgart | Germany

Dipl. Wi-Ing. Matthias Reeg

Telephone 0711/6862-282 | Telefax 0711/6862-747 | <u>matthias.reeg@dlr.de</u> www.DLR.de

Literature

- Arthur, W. B. (2005): Out of Equilibrium Economics and Agent-Based Modeling. In: Handbook of Computational Economics, Vol. 2, K. Judd and L. Tesfatsion (eds.), Elsevier/ North-Holland, 2005.
- Holland, J.H., Holyoak, K., Nisbett, R., Thagard, P. (1986): *Induction Processes of Inference, Learning, and Discovery.* MIT Press.
- Sargent, T.J. (1994): Bounded Rationality in Macroeconomics. Clarendon Press, Oxford.
- Wooldridge, M. (2002): An Introduction to Multi-Agent Systems. John Wiley & Sons, Chichester.
- Schmidt, B. (2000): *Die Modellierung menschlichen Verhaltens*. SCS European Publishing House, Delft.
- BMWi and BMU (2010): Federal Ministry of Economics and Technology and Federal Ministry for the Environment, Nature Conservation and Nuclear Safety: *The German government's Energy Concept.* Online:

http://www.bmu.de/files/english/pdf/application/pdf/energiekonzept_bundesregierung_en.pdf

