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ABSTRACT

Modeling of synthetic aperture radar (SAR) images has been
an important topic of research since the inception of SAR
satellites. Many theoretical and empirical models have been
presented in literature to accurately model the amplitude SAR
images. The method of parameters estimation of the probabil-
ity density function (PDF) for selected models is another topic
of research associated with modeling. Earlier the maximum-
likelihood (ML) methodology or the methods of moments
(MoM) were used for the parameter estimation. The method
of logarithmic-cumulants (MoLC), which has been proposed
for the parameter estimation for the PDF defined in R+, is
now a very popular tool for the efficient parameter estima-
tion for amplitude SAR images. In this article, we present a
survey of some of the well-known PDFs proposed for SAR
amplitude images by carrying out the parameter estimation
with the MoLC method. The objective is to demonstrate that
the statistical characterization of SAR images is strongly de-
pendent upon the observed scene content. Instead of using a
set of images, we carry out this study on set of object/texture
categories on a larger data-base.

Index Terms— Synthetic aperture radar (SAR), probabil-
ity density function (PDF), parameter estimation, method of
log-cumulants (MoLC)

1. INTRODUCTION

Understanding the statistical properties of SAR images is one
of the most important aspect for further applications such as
speckle removal, automated interpretation, classification and
target detection/ recognition. Automated interpretation of ob-
jects and target is gaining importance as with the increase in
number of high-resolution SAR satellites, the number of ac-
quired SAR images in archives is increasing day-by-day. Also
the increase in resolution has introduced the diversity of ob-
jects to a larger extent thus it is needed to study the statis-
tical properties of images containing different objects differ-
ently. Urban-areas with strong scatterers should be dealt dif-
ferently from urban-areas containing mixture of vegetation.
Even for land-cover topologies in very-high resolution im-

ages, uniform land-cover topologies are having different sta-
tistical behavior than the mixed-vegetation.

In literature, many theoretical and empirical models have
been proposed for amplitude SAR images, however no model
seems to accurately fit to the data in all categories. Here from
the categories we refers to the image patches containing dif-
ferent objects/textures. Some models fits the urban areas with
heterogeneous region better and other can model the uniform
land-cover topologies. In this study we want demonstrate this
observation and to find out the suitability of certain models for
statistical analysis of regions containing objects with different
scattering properties. For our study we consider Gamma [1],
Generalized Gaussian Rayleigh (GGR) [2], Rayleigh [1] [3],
Lognormal [1], Weibull [1], Symmetric-α-Stable (SαS or
heavy-tailed Rayleigh) [3], Generalized Gamma Distribution
(GΓD) [4] and Nakagami [1] model. As these distribution
families are very well documented in literature but results are
always presented for fewer images, so we will study the con-
sidered PDFs for a well-defined larger data-base with certain
categories.

The objective of this paper is to demonstrate that the sta-
tistical characterization of SAR images is strongly dependent
upon the observed scenes, thus we will be analyzing the men-
tioned PDFs on a larger data-base, with images containing
the diversity of objects and texture. The data-base for exper-
iments consists of very-high resolution TerraSAR-X images
with 12 categories containing 100 patches of each category.
Considered PDFs have been evaluated by computing the cor-
relation coefficients of estimated PDF and image histogram.
Section-2 deals with the MoLC method for parameter esti-
mation for considered models. In Section-3, we present the
methodology adapted for analysis. Results and discussions
are presented in Section-4.

2. PARAMETER ESTIMATION

Classically the ‘maximum-likelihood (ML)’ methodology
or the ‘methods of moments (MoM)’ were used to for the
parameter estimation [5]. The ML method chooses the pa-
rameter values that provides the highest value of the like-
lihood function by finding the root of the derivative of the
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likelihood function [5] [6]. The MoM computes the param-
eters by solving the system of equations formulated by the
theoretical moments EXk of the considered random vari-
able X as a function of its unknown parameters via Laplace
transform and setting them equal to the observed sample mo-
ments [5] [6]. The ML and MoM methods have their own
limitations, which makes these methods numerically very dif-
ficult and time-consuming. An efficient method of parameter
estimation is proposed in [8] for the PDFs defined in R+,
called the ‘method of log-cumulants (MoLC)’. Apart from
simpler computations for parameter estimation, it can also be
demonstrated that MoLC is a better and consistent alterna-
tive to MoM when parameter estimation is not feasible with
ML [6]. However MoLC method is not universally applicable
as in some cases solution of MoLC equations does not exist.

2.1. Notes on the method of log-cumulants (MoLC)

In classical statistical approach, to describe a random phe-
nomenon by a probability density function (PDF): fx(r), the
‘characteristic function’ is defined as the Fourier transform of
fx(r), and the ‘second characteristic function’ is defined as
the logarithm of the ‘characteristic function’. The properties
of Fourier transform facilitates to obtain the moments and
cumulants by derivation of the ‘characteristic function’ and
‘second characteristic function’ respectively. The method
of logarithmic-cumulants was proposed in [8] for the PDFs
defined in R+, by introducing the concept of second-kind
statistics : ‘second kind characteristic functions’, ‘second
kind moments (log-moments)’ and ‘second kind cumulants
(log-cumulants)’. Here in the generation of ‘first character-
istic function of second kind’, Mellin transform of the PDF
is used instead of Fourier transform. ‘Second characteristic
function of second kind’ is the logarithm of ‘first characteris-
tic function of second kind’. Similar to classical approach, in
second-kind statistics, ‘second kind moments (log-moments)’
and ‘second kind cumulants (log-cumulants)’ are computed
as the derivation of ‘first and second characteristic functions
of second kind’ respectively. PDF parameters estimates are
achieved by analytical computation of log-moments and log-
cumulants as function of the unknown parameters [4]. Table 1
presents the MoLC equations of some of the well-known SAR
PDFs. The parameters estimates are obtained by the analyt-
ical computation log-cumulants κj (where j is governed by
the number of unknown parameters in the PDF) and solving
the system of MoLC equations for unknown parameters.

3. METHODOLOGY

This section presents the detail of data-base used for perfor-
mance evaluation of SAR relevant PDFs presented in Table 1
and the method of measurement of performance.

(a) Airstrip (b) Backwaters (c) Urban-01

(d) Forest (e) Train track (f) Water and Urban

(g) Skyscrapers (h) Urban-02 (i) Grassland

(j) Highway (k) Mixed vegetation (l) Sea water

Fig. 1: Examples of SAR image patches (of the size 200×200
pixels) in different objects/texture categories. Amplitude
SAR image patches have been obtained from very-high reso-
lution single-look complex TerraSAR-X images from differ-
ent areas in order to include the diversity of objects/textures.
.
3.1. Data Base for the Experiments

We have generated a data base of 1200 patches (with image
size of 200×200 pixels) from the very-high resolution spot-
light TerraSAR-X images. Each patch covers approximately
200 m2 of ground. This size can be generally used to de-
fine a particular category, as it is large enough to contain the
contextual information needed to define an objects’ structure
in the case of very-high resolution yet also suitable for texture
computation as well as parameter estimation of homogeneous
areas [15]. The data base has been prepared manually by ex-
tracting patches from TerraSAR-X full-scenes from nine dif-
ferent locations. This data base comprises of well-defined 12
objects/texture categories with 100 patches of each category
in order to includes the diversity of objects/textures in analy-
sis. As the extraction and annotation of patches was carried
out manually, this data base can be used as a ground truth for
several applications. The same data base has been used for the
analysis of feature descriptors obtained using non-parametric
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Table 1: Probability density function (PDF) and the MoLC equations for the considered PDF models. Here, κi is the ith
log-cumulant [8], Γ(.) is the Gamma function [11] [6], Ψ(ν, .) is the νth order polygamma function [11] [6], Kα(.) is the αth
order modified Bessel function of the second kind [11] [6], J0(.) is the zero-th order Bessel function of the first kind [11] [6]
and Gν(.) are the specific integral functions for GGR model [2] [6].

Model Probability Density Function The MoLC equations

Gamma fη,µ(r) = 1
Γ(L) (Lµ )LrL−1 exp[−Lrµ ], κ1 = Ψ(0, L) + lnµ− lnL,

[1] [8] L, µ > 0, r ≥ 0. κ2 = Ψ(1, L).

GGR fλ,γ(r) = γ2r
λ2Γ2(λ)

∫ π/2
0

exp[−(γr)1/λs(θ)]dθ, κ1 = λΨ(0, 2λ)− ln γ − λG1(λ)[G0(λ)]−1,

[2] [14] with s(θ) = (| cos θ|1/λ + | sin θ|1/λ), λ, γ > 0, r ≥ 0. κ2 = λ2[Ψ(1, 2λ) + G2(λ)
G0(λ) − (G1(λ)

G0(λ) )2].

Lognormal fm,σ(r) = 1
σr
√

2π
exp[− (ln r−m)2

2σ2 ] κ1 = m,

[1] m ∈ R, σ > 0, r > 0. κ2 = σ2.

Weibull fη,µ(r) = η
µη r

η−1 exp[−( rη )η], κ1 = lnµ+ η−1Ψ(0, 1),

[1] η, µ > 0, r ≥ 0. κ2 = η−2Ψ(1, 1).

SαS fα,γ(r) = r
∫ +∞

0
ρ exp[−γρα]J0(rρ)dρ, ακ1 = (α− 1)Ψ(1) + ln γ2α,

[3] [8] r ≥ 0. κ2 = α−2Ψ(1, 1).

GΓD fν,κ,σ(r) = |ν|
σΓ(κ) ( rσ )κν−1 exp[−( rσ )ν ], κ1 = Ψ(0, κ)/ν + lnσ,

[4] [12] [6] ν 6= 0, κ, σ > 0, r ≥ 0. κj = Ψ(j − 1, κ)/νj , j = 2, 3.

Nakagami fL,λ(r) = 2
Γ(L) (λL)Lr2L−1 exp[−λLr2], 2κ1 = Ψ(0, L)− lnλ− lnL,

[1] [8] L, λ > 0, r ≥ 0. 4κ2 = Ψ(1, L).

approaches from SAR image patches within a transformation
space for SAR image retrieval in [9]. Example of one patch
from each category is shown in Fig. 1.

3.2. Performance criteria

Each image-patch has been obtained from very-high reso-
lution single-look complex TerraSAR-X scenes and is con-
verted to the amplitude modality. For each amplitude SAR
image-patch we estimate the parameters for considered PDFs
using the MoLC equations shown in the Table-1. Using these
estimated parameters and PDF equations, the theoretical PDF
is computed. Correlation coefficient [2] of empirical his-
togram and the theoretical PDF is used as the measure of
performance. For the image-patches of size N × N , cor-
relation coefficients (CCs) is computed for the empirical
histogram and the theoretical PDF at N and 2 × N bins and
average value of both CCs is considered for the performance
evaluation.

4. RESULTS AND DISCUSSIONS

Table-2 presents the mean value of computed correlation co-
efficients for considered PDFs for each category. It is to be
noted that for around 10% of patches the solution for the
MoLC equations for GΓD model does not exist, so only the
mean of patches with feasible solution is presented. High-

lighted cells in Table-2 shows the highest value of correlation
coefficient for each category and its evident from this exper-
iment that a single model does not fit best in all the cases.
We will discuss only the models with highest performance in
each category.

GGR model assumes that the speckle is fully-developed,
and number of scatterers is large enough to satisfy the cen-
tral limit theorem [10], thus the real and imaginary parts of
the complex SAR backscattered signals are assumed to be
independent zero-mean generalized Gaussian (GG) [7] ran-
dom variables and resulting amplitude PDF is derived analyt-
ically [2]. These conditions seems to satisfy very well in case
of uniform land-cover topology like categories 4-Forest and
9-Grassland. Thus GGR model is performing better for these
two categories.

Generalized Gamma distribution was first presented
in [13]. Based on this model, GΓD has been introduced
as an empirical-statistical model for SAR images in [4]. As
the well-known distributions such as Rayleigh, Nakagami,
Gamma, Log-Normal and Weibull can be considered as the
special cases of GΓD, thus can be considered as a very flex-
ible model. In our experiments this model provides better
performance for the categories 1-Airstrip, 8-Urban-02, 10-
Highways and 11-Mixed vegetation. However this model
also exhibits some heavy-tailed characteristics, still for the
categories with heterogeneous data with heavy-tailed behav-
ior, this model is not best suited. As this a three parameter
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Table 2: Mean value of the correlation coefficients between various estimated PDFs and image histogram for 100 patches in
each category. For some patches in certain categories, it was not possible to carry out parameter estimation for GΓD PDF using
MoLC equations. Highlighted cells shows the PDF with highest correlation-coefficient in particular category.

No.
XXXXXXXXXXCategory

PDF Gamma GGR Rayleigh Log-Normal Weibull SαS GΓD Nakagami

1 Airstrip 99.02% 99.17% 95.95% 98.01% 98.23% 98.66% 99.44% 97.50%
2 Backwaters 96.61% 98.29% 87.08% 98.95% 96.02% 98.97% 98.64% 93.34%
3 Urban-01 97.28% 98.38% 89.91% 98.86% 96.47% 99.16% 98.71% 94.34%
4 Forest 99.50% 99.78% 99.49% 96.64% 99.67% 99.68% 99.75% 99.59%
5 Train track 98.33% 99.01% 93.20% 99.12% 97.62% 99.47% 99.15% 96.01%
6 Water and Urban 96.33% 97.69% 90.66% 98.01% 95.72% 99.43% 97.81% 93.17%
7 Skyscrapers 96.95% 98.53% 87.42% 98.86% 96.44% 99.07% 98.64% 93.72%
8 Urban-02 97.78% 98.75% 91.94% 99.52% 96.69% 99.36% 99.61% 94.81%
9 Grassland 98.94% 99.67% 99.59% 95.19% 99.63% 99.65% 99.61% 99.60%

10 Highways 99.65% 99.63% 96.65% 98.64% 98.80% 98.82% 99.77% 98.12%
11 Mixed vegetation 99.66% 99.65% 97.91% 97.76% 99.15% 99.05% 99.70% 98.75%
12 Sea water 94.06% 95.30% 95.33% 89.49% 95.34% 95.27% 95.21% 95.35%

model and mathematically difficult to estimate thus the better
performance of simpler model i.e. GGR for the uniform cat-
egories 4-Forest and 9-Grassland can be justified, however
the improvement in performance of GGR model over GΓD is
minimal.

Whereas GΓD is an empirical-statistical model and GGR
is based on central limit theorem, SαS model is based on a
generalized version of the central limit theorem by extend-
ing the standard scattering model [2] by assuming that the
sum of a large number of i.i.d. processes approach the α-
stable law [16], which contains the Gaussian model as a spe-
cial case but can also describe impulsive and skewed behav-
ior [3]. Thus this model seems to better tackle the problem
of model with heavy-tail behavior especially in the urban-
areas. In our study also the SαS model is performing better
in Categories: 2-Backwaters, 3-Urban-01, 5-Train track,
6-Water and Urban and 7-Skyscrappers. These categories
consists of strong scatterers, which explains the underlying
heavy-tailed behaviors of the PDF for image-patches in these
categories.

The last category 12-Sea-water is a special case of sea-
clutter where Nakagami model outperforms the other models,
however the performance of all the models is more or less
similar.

5. CONCLUSIONS AND PERSPECTIVES

The scope of this article is to present a study of some of
the probability density functions (PDFs) for amplitude SAR
images for various categories with diversity of objects. As
presented in results, no PDF fits accurately to all categories
but some PDFs seems to perform better over others depend-

ing upon the content and objects in image which are the
underlying the scattering phenomenon in each case. Thus
for various applications, it is needed to use the PDFs se-
lectively which is best adapted for the required application,
as the statistical characterization of SAR images is strongly
dependent upon the observed scenes. As a future scope of
work, it will be interesting to compare the results obtained
from ‘method of log-cumulants (MoLC)’ with traditional ap-
proaches like ‘maximum likelihood (ML)’ and ‘method of
moments (MoM)’. The PDFs included in evaluation were
limited some of well-known PDFs, however it is suggested
to carry out the performance evaluation by including more
SAR relevant PDFs such as K, Fisher model, generalized
Gamma Rayleigh (GΓR) distribution etc.. We have used
correlation coefficient as performance measure in this paper,
but comparison with other metrics which characterizes the
weak convergence, e.g. Kolmogorov-Smirnov distance or
symmetric Kullback-Leibler distance is suggested.

In summary, we have presented first results on a limited
data-base with selected few PDFs to demonstrate that the best
fitting SAR PDF is strongly dependent upon the image con-
tent of the observed scene. This motivates us to repeat the
study with more robust metrics on a even larger data-base
with inclusion of all possible SAR relevant PDFs.
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