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ported towards the center, whereas 26Al moves to the
upper layers of the body together with the silicate melt.
Results: The results show that even in a small
planetesimal with the radius of only a few km the heat
production by the short-lived radioactive nuclei suffic-
es to achieve melting assuming an initially porous
state. Initially porous bodies reach considerably higher
peak temperature compared to initially compact bodies
of equal size.
Figure 1 illustrates for which conditions, i.e., the for-
mation time assuming instantaneous accretion and the
radius of a planetsimal, the planetsimal starts to melt
(partial differentiation) or is differentiated into an iron
core. Small or late accreted bodies even remain below
the threshold temperature for sintering, do not sinter
and keep their porous nature. Bodies that reach the
threshold temperature for sintering in certain areas but
do not melt (or melt but do not differentiate due to
unfavorable geometry, low sulfur content or too low
temperatures), lose porosity in the regions around the
centre with a certain radius. They consist of a sintered
interior and a porous outer shell. If the melting temper-
ature of iron is exceeded the degree of differentiation
can vary considerably. A typical structure of a differ-
entiated planetesimal consists of an iron core, a silicate
mantle, an undifferentiated but consolidated layer and
a porous primodial layer. Under favorable conditions
(i.e., high sulfur fraction, early accretion and initially
porous state) even bodies as small as 8 km in radius
could have differentiated.
It is important to note that peak temperatures are
dampened by any kind of non-instantaneous accretion
(Fig. 2). We have tested linear, exponential and asymp-
totical laws and they yield increasingly lower tempera-
tures compared to the instantaneous formation. Pro-
longed accretion duration has a similar effect. Hence
the extent of melting varies not only with the onset
time but also with the duration of accretion as well as
with the accretion law. A similar relation exists be-
tween the accretion and the extent of sintering. The
thickness of the porous regolith layer increases from
the instantaneous formation to linear, exponential and
late runaway accretion.
On the contrary to current assumptions [12,13], we
find that the differentiation and hence the formation of
cores in planetesimals is not an instantaneous process.
The duration of core formation depends strongly on the
sulfur content. High content of FeS results in fast dif-
ferentiation (≤1 Ma) , low sulfur fraction may result in
slow differentiation (up to 10 Ma) or no differentiation
at all.
Interesting to note is also that for a S-rich material
(with a low liquidus temperature of the iron) the core
forms rather prior to silicate melting at temperatures
below ~1425 K. For a low S fraction (iron liquidus at
about 1700 K) the interval between the solidus and the

liquidus of iron is almost 500 K. Iron melting is hence
considerably less prominent below the silicate solidus
and the differentiation starts during the melting of
silicates.
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Fig. 2 Temporal evolution of the radial distribution of the temperature.
Upper panel: A body that accretes instantaneously at 1.8 Ma to the
terminal radius of 70 km. Lower panel: A body that accretes linearly
within 0.5 Ma starting at 1.8 Ma with the initial radius of ~1.2 km and a
terminal radius of 70 km. The terminal radius is the theoretical radius of
a body with the same composition, but without pores. In the lower panel
accretion shifts the differentiation to the time when the heat generation is
dominated by 60Fe. Hence, by contrast to the upper panel, no change in
the temperature structure occurs.
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