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According to the point-source point-receiver (PSPR) reciprocity, the received field remains equal when
the positions of a point source and point receiver are interchanged. We extend the PSPR scenario to a
finite receiver that spatially averages scintillation over its aperture. By use of weak-fluctuation theory, an
analytical expression for the correlation coefficient between the received powers at both link ends is
provided. The effects of turbulence profile, receiver aperture size, and central obscuration on the correla-
tion are assessed. Because correlation is obtained to the detriment of antenna gain and aperture aver-
aging, the net benefit of the channel reciprocity is highly scenario dependent. © 2012 Optical Society of
America
OCIS codes: 010.1330, 030.1670, 060.2605.

1. Introduction

Four decades ago, it was shown theoretically that the
propagation of a monochromatic spherical wave has
a reciprocity property in a refractive medium: the
received field remains equal when the positions of
the point source and point receiver are interchanged
[1,2]. Recent experiments on bidirectional optical
links through the atmosphere have demonstrated
the correlation between the oppositely directed
signals [3,4].

The relation between two waves propagating
through a common turbulent volume has been inten-
sively investigated by the lidar community [5–7].
When a laser pulse is reflected by a target and mea-
sured near the laser source, a “backscatter amplifica-
tion effect” is observed as a result of correlated
turbulence-induced perturbations of the “incident”
and “reflected” waves. However, theoretical results
from the lidar community cannot be directly applied
to a bidirectional link. Instead of emitting a single
wave that propagates twice through the same turb-

ulent volume, a bidirectional link consists of two
distinct waves emitted and received by distinct
transceivers and propagating in opposite directions.
The lidar signal is generally analyzed in a single
plane (i.e., the plane of emission and reception),
whereas a bidirectional link provides two signals
analyzed in two different planes. The type of bidirec-
tional link under consideration is depicted in Fig. 1.
We use the terms “forward” and “return” link, which
should not be confused with the “incident” and
“reflected” lidar waves. We assume that the forward-
wave transmitter (forward Tx) is located in the cen-
ter of the return-wave receiver (Rx), and vice versa at
the other link end. Thus, both links have the same
axis. Also shown is a thin transverse perturbation
screen Ψ at a distance z1 from the forward source.

Our purpose is to quantify this correlation between
the two signals for different Rx aperture sizes and
different turbulence paths. The paper is organized
as follows. In Section 2, based on the Huygens–
Fresnel principle, the intensity field at one link
end is expressed as a function of the intensity field
at the other end when a single perturbation screen
lies on the path. Based on the Rytov theory, a general
expression for the correlation coefficient is given in

1559-128X/12/152888-06$15.00/0
© 2012 Optical Society of America

2888 APPLIED OPTICS / Vol. 51, No. 15 / 20 May 2012



Section 3. Whereas Section 4 considers the case of a
single PS on the path, Section 5 deals with paths of
constant turbulence strength and vertical paths.
We then conclude and mention some prospective
activities.

2. Huygens–Fresnel Principle

We consider a single perturbation screen (PS) on the
path as depicted in Fig. 1. By means of the Huygens–
Fresnel principle, we express the received forward
field UF�ρ� as a function of the forward field
UF;0�s� at the PS [8]:

UF�ρ� �
exp�jkz2�

jλz2
exp

�
j
kρ2
2z2

�Z
UF;0�s�

× exp
�
j
ks2

2z2

�
exp

�
j
k
z2

s · ρ
�
ds; (1)

ρ and s are respectively the Rx-plane and the screen-
plane (two-dimensional) vectors. The expression for
the forward spherical wave at the PS is

UF;0�s� �
AF

z1
exp

�
jk
�
s2

2z1
� z1

��
Ψ�s�; (2)

where the PS transmission function Ψ�s� takes arbi-
trary complex values and AF is the constant wave
amplitude factor. To obtain the return fields UR
and UR;0 in the Rx plane and screen plane, respec-
tively, we simply interchange z1 and z2 and replace
the amplitude factor AF by AR. Because our goal
parameter, i.e., the correlation coefficient, is indepen-
dent of the mean values of the assessed variables, we
assume AF � AR without loss of generality. The rela-
tion between the forward and return waves can be
written as

UR�ρ� � UF

�
z2
z1

ρ

�
exp

�
j
kρ2
2z21

�z1 − z2�
�
; (3)

from which we deduce the relation between the
received intensities IF and IR:

IR�ρ� � IF

�
z2
z1

ρ

�
: (4)

Thus, the intensities in the forward and return Rx
planes are the same but with different spatial scales
according to the position of the perturbation screen.

3. Correlation Coefficient for a Finite Aperture

The covariance σ2FR between the forward and return
Rx powers, PF and PR, is given by

σ2FR � hPFPRi − hPFihPRi

�
�Z

IF�ρ1�WF�ρ1�dρ1
Z

IR�ρ2�WR�ρ2�dρ2
�

−

�Z
IF�ρ1�WF�ρ1�dρ1

��Z
IR�ρ2�WR�ρ2�dρ2

�
:

(5)

The angle brackets denote ensemble averaging. The
aperture window function of the forward receiver is
defined by

WF� ~n� �
�
1; for ~n inside aperture;
0; otherwise: (6)

WR�ρ� is defined similarly. Assuming hIFi � hIRi � 1
and merging the two integrals in Eq. (5), we write

σ2FR �
ZZ

hIF� ~n1�IR� ~n2�− 1iWF� ~n1�WR� ~n2�d ~n1d ~n2: (7)

We now assume weak scintillation and apply the
Rytov propagation theory. This assumption allows
us to consider the received intensity field as the
sum of independent perturbations caused by turbu-
lence along the propagation path. For the forward
link, we thus write

IF�ρ� �
Z

L

0
iF�ρ; z1�dz1; (8)

where iF�ρ; z1� is the contribution to the received in-
tensity field made by the thin turbulence screen, lo-
cated at a distance z1 from the forward transmitter.
Furthermore, we describe BF�r�, the spatial covar-
iance function of the forward Rx intensity. Because
the Rx intensity fields are assumed to be isotropic
and homogeneous stochastic fields, the covariance
between two points of these fields depends only on
their separation distance r. Still relying on the Rytov
theory, BF�r� is written as the sum of independent
contributions cumulated along the propagation path:

BF�r� �
Z

L

0
bF�r; z1�dz1: (9)

The covariance contribution bF�r; z1� for a spherical
wave is given by [7]

Fig. 1. (Color online) Propagation of a spherical wave in the
forward and return directions. The turbulent screen Ψ is shown
at a distance z1 from the point source, which is transmitting in
the forward direction.
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bF�r; z� � 0.033 × 8π2k2C2
n�z1�
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with C2
n�z1� being the constant of the turbulence

structure function at a distance z1 and J0 the Bessel
function of the first kind and order zero. Now, using
Eq. (8), the intensity covariance term in Eq. (7) can be
written as

hIF� ~n1�IR� ~n2�i − 1 �
�Z
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0
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where in the first step we used 1 � R
L
0 hiFidz1. Intro-

ducing Eq. (4) into Eq. (11) yields
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The on-axis correlation distance of iF�z1� is much
smaller than both the path length L and the varia-
tions of C2

n�z1�. It results that the covariance of
iF�z1� in Eq. (12) has some appreciable value only
when the difference jz�1 − z1j is close to zero. With
z�1 ≅ z1, the inner integral of Eq. (12) corresponds
to the contribution bF�z1� of turbulence at z1 to the
total intensity covariance BF:
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Equation (12) thus becomes

hIF� ~n1�IR� ~n2�i − 1 ≈

Z
L

0
bF

����� z2z1 ~n2 − ~n1

����; z1
�
dz1: (14)

Inserting Eq. (14) into Eq. (7) leads to

σ2FR �
Z
R2
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R2

Z
L

0
bF
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����; z1
�

×WF� ~n1�WR� ~n2�dz1d ~n1d ~n2: (15)

Applying a factor z1∕z2 to the integral variable ρ2,
Eq. (15) becomes

σ2FR �
Z

L

0

�
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�
2
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bF�j ~n2

− ~n1j; z1�WF� ~n1�WR

�
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z2
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�
d ~n1d ~n2dz1: (16)

For apertures with circular symmetry, Fried has
shown how the two integrals overR2 can be rewritten
as a single integral over R� [9]:

σ2FR � 2π
Z

L

0

Z
∞

0
�z1∕z2�2bF�r; z1�HFR�r; z1�rdrdz1;

(17)

where

HFR�r; z1� �
Z

WF�r0�WR

�
z1
z2

�r0 � r�
�
dr0: (18)

We can now express the correlation coefficient,
defined by

μFR ≡ σ2FR∕σFσR; (19)

where σ2F is the variance of the forward Rx power,
given by

σ2F � 2π
Z

∞

0
BF�r�HF�r�rdr; (20)

with

HF�r� �
Z

WF�r0�WF�r0 � r�dr0; (21)

and where the variance σ2R of the return Rx power is
expressed similarly, replacing R with F in the above
two equations. Inserting Eqs. (17) and (20) into
Eq. (19), we finally obtain

μFR �
R
L
0 �z1∕z2�2

R
∞

0 bF�r; z1�HFR�r; z1�rdrdz1																																																																																			R
∞

0 BF�r�HF�r�rdr
R
∞

0 BR�r�HR�r�rdr
q : (22)

In arriving at Eq. (22), Rx apertures have rotational
symmetry. We additionally relate both receivers ac-
cording toWR� ~n� � WF� ~n�� ~n∕m�, wherem is a scaling
factor. We denote by DF and DR the forward and
return Rx diameters, which are thus related by
DR � mDF, and introduce the forward Rx area
aF ≡

R
WF�ρ�dρ. To help analyze the limit cases for

μFR, Table 1 provides the “height” and the “width”
of the functions involved in Eq. (22). The “height” cor-
responds to their maximum value at r � 0. The
“width” is the r-value above which the function is
close to zero. The correlation widths ρF and ρR are
defined as the widths of bF�r; z1� and bR�r; z1�,
respectively.
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4. Single-PS Analysis

Assuming that the perturbations consist of a single
PS at position z1, Table 2 gives the values of μFR under
certain limit conditions.Figure 2 shows the coefficient
μFR as a function of the PS position along the path. In
the left panel, both receivers have equal geometry,
with DR � DF. The case of a circular central obscura-
tion defined by the obscuration ratio q (ratio of inner
diameter to outer diameter) is considered. The ob-
struction ratio q is assumed equal for both receivers.
Correlation reduction due to central obscuration is
particularly strong when the central obscuration on
one link side encompasses 1 correlation width more
than the outerRxdiameter on the other link side.This
condition can be written as qDR∕ρR −DF∕ρF ≈ 1 or,
symmetrically, qDF∕ρF −DR∕ρR ≈ 1.

In the right panel of Fig. 2, it can be observed how
Rx apertures of different sizes (here DR � 3DF is as-
sumed) modify the symmetry of μFR with respect to
the PS position. The full correlation is obtained for a
PS located at z1∕L � m∕�m� 1�.

5. Continuous-C2
n Paths

In Fig. 3, the correlation coefficient is shown as a
function of DF∕

						
λL

p
, considering a horizontal path

characterized by a constant C2
n. A symmetric link

is considered with m � 1 (i.e., DR � DF), as well as
an asymmetrical link with m � 3. Although correla-
tion decreases as DF increases, we note that the
correlation does not tend to zero. This persistent cor-
relation is caused by turbulence near the middle of
the path. Considering for example a constant C2

n
and no central obscuration (q � 0), we find μFR ≈

0.12 for DF∕
						
λL

p
→ ∞.

We now consider a link between space and ground,
where the downlink is assumed to be the forward
link. Since the atmosphere is much closer to the
forward receiver than to the forward transmitter,
we have z2 ≪ z1 and DR�z2∕z1� ≪ DF. Thus, Eq. (18)
becomes

HFR�r; z1� ≈ aR�z2∕z1�2WF�r�: (23)

In addition, for the return link (uplink), the correla-
tion width at the receiver is much larger than the
receiver size (DR ≪ ρR), so that we can write

2π
Z

∞

0
BR�r�HR�r�rdr ≈ a2

RBR�0�: (24)

Table 1. Main Characteristics of Functions Involved in Eq. (22)

Function
f �r�

Function
Height f �r � 0�

Function Width
over r

bF�r; z1� ∝ C2
n�z1��z2z1�5∕6 ρF �
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p
bR�r; z1� ∝ C2

n�z1��z2z1�5∕6 ρR �
																		
λLz1∕z2

p
HFR�r; z1� Circular Rx apertures

without obscuration:
aF for z1∕mz2 ≤ 1
aF�mz2∕z1�2 for

z1∕mz2 > 1

1
2DF�1�mz2∕z1�

HF�r� aF DF

HR�r� m2aF DR
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Fig. 2. (Color online) Correlation coefficient μFR between forward and return Rx powers for the case of a single turbulent screen along the
path. Left: Rx apertures of the forward and return channels with the same geometry (m � 1). Right: Rx aperture of the return channel 3
times larger than the forward-channel Rx aperture (m � 3). The key and the y-axis are common to both graphs. Two values for the
obscuration ratio q (ratio of inner to outer diameter) are considered.

Table 2. Correlation Coefficients μFR under Limit Conditions
for a Single Turbulent Screen along the Path

Path Region Limit Condition μFR
z1
mz2

≤ 1 z1∕z2 ≫ λL∕D2
F (i.e., DF ≫ ρF) ≈ z1∕mz2

z1∕z2 ≫ m2�D2
F∕λL� (i.e., DR ≪ ρR) ≈ 1

z1
mz2

> 1 z1∕z2 ≪ λL∕D2
F (i.e., DF ≪ ρF) ≈ 1

z1∕z2 ≪ m2�D2
F∕λL� (i.e., DR ≫ ρR) ≈ mz2∕z1
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Finally, introducing Eqs. (23) and (24) into Eq. (22),
we obtain

μFR �
R
∞

0 BF�r�WF�r�rdr																																																																				
�2π�−1BR�0�

R
∞

0 BF�r�HF�r�rdr
q : (25)

An important assumption underlying our analysis is
that both transceivers should share the same axis.
In general, the relative velocity of the spacecraft re-
quires the transmitters to point ahead of the direc-
tion of the received beam. Thus, Eq. (25) is based on
a negligible point-ahead angle, meaning that the
point-ahead angle should be much smaller than
the isoplanatic angle [10].

Figure 4 shows the correlation coefficient μFR for a
space–ground bidirectional link calculated from
Eq. (25) with a C2

n profile determined by the
Hufnagel–Valley model “HV5-7” [11]. The vertical
path may be slanted as long as the link remains

in the weak-fluctuation regime and as long as Earth
curvature has a negligible impact. The coefficient μFR
is plotted versusDground∕

													
λLatm

p
, whereDground is the

ground receiver’s diameter and Latm is the character-
istic atmospheric propagation length, which has been
set to 10 km∕ sin�α�, α being the elevation angle of the
link above the horizon. Following our reasoning in
Section 4, the configuration that yields a strong effect
on the central obscuration can be deduced from the
relation qDF∕ρF −DR∕ρR ≈ 1. Recalling that DR ≪

ρR and identifying DF∕ρF ≈ Dground∕
													
λLatm

p
, we

conclude that the central obscuration significantly
reduces the correlation at Dground∕

													
λLatm

p
≈ 1∕q.

6. Conclusion

We have extended the point-source point-receiver
(PSPR) scenario to a finite receiver that spatially
averages scintillation over its aperture. For the sake
of simplicity, the assumption of a point source and its
associated spherical wave has been kept. The cor-
relation coefficient of the received powers could
be expressed analytically using the Rytov (weak-
fluctuation) theory. The main factors impacting the
correlation are (1) the position of the turbulence
along the path, (2) the aperture size with respect
to the Fresnel length

						
λL

p
, and (3) the aperture’s

central obscuration.
The accuracy of these results may be improved by

extending the analysis to the strong-scintillation re-
gime. Although more complex, several approaches
for the characterization of strong scintillation exist
[7,12,13] and might yield more general expressions
of the correlation coefficient.

After having characterized the PSPR channel
reciprocity, it would be interesting to assess its use-
fulness, in particular for free-space optical communi-
cations. Knowing the channel state (scintillation fade
or surge), a transmitter can adapt the signal proper-
ties (e.g., power, data rate) accordingly and improve
the channel capacity. As noted in [3], the channel re-
ciprocity makes a dedicated channel-state feedback
radio link unnecessary and allows a shortening of
the channel-state feedback delay. The feedback delay
is the difference between the time at which the feed-
back-dependent communication signal is perturbed
by the channel and the time at which the channel
was actually measured. This delay should be shorter
than the scintillation correlation time (typically
around 1 ms). For the case of a conventional dedi-
cated feedback link, the feedback delay equals the
round-trip time, 2L∕c with c the light speed, plus the
processing time at both terminals. For the case of a
feedback based on PSPR channel reciprocity, the
delay depends on the position of turbulence along
the path. Considering the simplified case depicted
in Fig. 1 with a single PS located at a distance z1 from
the forward transmitter, the feedback delay of a for-
ward link equals only 2z1∕c plus the processing time
at the forward transmitter.
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n path.
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Future work could consist of evaluating the benefit
of channel reciprocity, e.g., in decibels of average Tx
power, for specific link scenarios. First, the depen-
dence of the channel capacity on the reciprocity corre-
lation must be determined so that a minimum
correlation coefficient for a link performance increase
can be identified. Then, an extensive link budget ana-
lysis must be performed considering that reciprocity
correlation is reached at the expense of antenna gains
and aperture averaging. In fact, we can already state
that the need for small-aperture antennas to obtain
significant correlation will make difficult the applica-
tion of PSPR reciprocity to long-distance links. Links
between a ground station and a spacecraft generally
involve large apertures on the ground and also a
point-ahead angle that may significantly reduce the
correlation. For example, to maintain the spherical-
wave assumption for an uplink, the beam diameter
DTx;ground at the transmitter should fulfill the condi-
tionDTx;ground ≪

													
λLatm

p
, where Latm is the character-

istic atmospheric length. With λ � 1 μm and
Latm � 10 km, the condition becomes DTx;ground ≪
100 mm and limits the applications to near-Earth
spacecraft and low-bandwidth measurements.
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