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The thermoacoustic coupling caused by dynamic flow/flame interactions was investigated in a gas-turbine model

combustor using high-repetition-rate measurements of the three-component velocity field, OH laser-induced

fluorescence, and OH* chemiluminescence. Three fuel-lean, swirl-stabilized flames were investigated, each of which

underwent self-excited thermoacoustic pulsations. The most energetic flow structure at each condition was a helical

vortex core that circumscribed the combustor at a frequency that was independent of the acoustics. Resolving the

measurement sequence with respect to both the phase in the thermoacoustic cycle and the azimuthal position of the

helix allowed quantification of the oscillatory flow and flame dynamics. Periodic vortex/flame interactions caused by

deformation of the helices generated local heat-release oscillations having spatially complex phase distributions

relative to the acoustics. The local thermoacoustic coupling, determined by statistically solving the Rayleigh integral,

showed intertwined regions of positive and negative coupling due to these vortices. In the quietest flame, the helical

vortex created a large region of negative coupling that helped damp the oscillations. In the louder flames, the shapes

of the oscillating vortices and flames were such that large regions of positive coupling were generated, driving the

instability. From these observations, flame/vortex configurations that promote stability are identified.

Nomenclature

a = proper orthogonal decomposition temporal coefficient
�ap = doubly-phase-resolved mean oscillation
D = dissipation rate of acoustic energy
f = frequency
M = proper orthogonal decomposition spatial eigenmode
Pth = thermal power
p = pressure
_q = heat-release rate
S = swirl number
�t = excess stochastic turbulent fluctuation
_v = volume flow rate
� = thermoacoustic phase shift
� = total thermoacoustic energy transfer
# = local thermoacoustic energy transfer
� = azimuthal angle through helical vortex cores
� = proper orthogonal decomposition eigenvalue
� = flame surface density
� = phase angle
� = total doubly-phase-resolved thermoacoustic coupling
 = local doubly-phase-resolved thermoacoustic coupling
! = vorticity
�$ = long time average

�$ap = sum of long average and doubly-phase-resolved
oscillation

Subscripts

a = acoustic
h = helical vortex core
qc = heat-release centroid

I. Introduction

C OMBUSTION-DRIVEN pressure and heat-release oscilla-
tions, or thermoacoustic instabilities, are a major problem in

low-emission gas-turbine engines [1–4]. These instabilities are
naturally excited by feedback loops that couple an acoustic mode of
the enginewith a process causing variations in the rate of heat release
from combustion. The resultant large-amplitude pressure and heat-
release oscillations lead to corresponding oscillations in the mechan-
ical and thermal loads on various engine components, causing
premature (and possibly catastrophic) component failure. Other
problems, such as flame blowoff and flashback, reduced combustion
efficiency, and increased pollutant emissions, also can be caused by
thermoacoustic instabilities. Although different control strategies
have been implemented with varying degrees of success [4–8], these
are generally applied as retrofits when unstable conditions are en-
countered late in the engine testing process, and they are not robust to
configuration changes, fuel changes, wide operation ranges, or
unexpected transients. It is therefore highly desirable to better
understand the mechanisms coupling the acoustics and heat release
in order to better predict, avoid, and control thermoacoustic insta-
bilities. In this work, these mechanisms are analyzed in a model gas-
turbine combustor based on data from high-repetition-rate laser
measurements.

Thermoacoustic coupling occurs when a natural acoustic
oscillation in the engine causes, through some mechanism, an oscil-
lation in the heat-release rate. Thermoacoustically unstable states
exist when such couplings cause the total amount of energy
transferred from unsteady combustion to the acoustic field� over a
given time to exceed the amount of acoustic energy that is dissipated
within the combustor or transmitted through its boundaries D. The

Presented at the 46th Joint Propulsion Conference & Exhibit, Nashville,
TN, 28–30 2010; received 30 June 2011; revision received 10 August 2011;
accepted for publication 10 August 2011. Copyright © 2011 by DLR,
German Aerospace Center. Published by the American Institute of
Aeronautics andAstronautics, Inc., with permission. Copies of this papermay
be made for personal or internal use, on condition that the copier pay the
$10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923; include the code 0001-1452/12 and $10.00 in
correspondence with the CCC.

∗Research Associate, Institute for Combustion Technology; currently
Assistant Professor, Institute for Aerospace Studies, University of Toronto.
Member AIAA.

†Research Associate, Institute for Combustion Technology. Member
AIAA.

‡Research Associate, Institute for Combustion Technology.
§Principal Aerospace Engineer, Advanced Propulsion Division. Associate

Fellow AIAA.

AIAA JOURNAL
Vol. 50, No. 4, April 2012

952

http://dx.doi.org/10.2514/1.J051466


local acoustic energy transfer from the thermoacoustic coupling
[#�x�] is determined by the local integral of the pressure p and
volumetric heat-release _q fluctuation, with the net energy transfer
given by the integral over the combustor volume:

��
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#�x� dV �
Z
V

Z
T

p0�x; t� _q0�x; t� dt dx (1)

This is referred to as the Rayleigh integral and shows that energy is
locally transferred to the acoustic field when the phase shift between
the heat release and the pressure oscillations is less than 90�.
Otherwise, energy is transferred away from the acoustic field. The
system is unstable and the oscillations grow when �>D. Early-
design prediction of thermoacoustically unstable conditions there-
fore requires prediction of the heat-release fluctuation distribution
and its local phase shift relative to the combustor acoustics.

This is not yet possible in practical systems due to the complex
thermofluidic processes required to stabilize low-emission, fuel-lean
flames in gas-turbine combustors. A common flow configuration for
flame stabilization in low-emission combustors involves swirling
premixed or partially premixed reactants tangentially around the
nozzle axis [4,9–12]. Swirl-induced vortex breakdown in these
combustors leads to the formation of a large central recirculation
zone (CRZ) downstream of the nozzle exit that transports hot
products back to the flame root, stabilizing the combustion [13,14].
The swirling flow also may lead to the formation of unsteady, large-
scale, helical vortex cores (HVCs) [10,13,15–24]. These three-
dimensional dynamic flow structures circumscribe the nozzle and
affect the mixing and combustion processes. Periodic heat-release
oscillations therefore do not occur simultaneously everywhere in the
combustor or in radially symmetric patterns, but instead have
complex amplitude and phase distributions that are determined by
the local dynamic interaction of flow structures with the flame and
acoustics. Furthermore, the behavior, shape, and even existence of
such structures can depend on the combustor and acoustics. In recent
measurements, Lacarelle et al. [23] found that helical modes that
were present in an unforced swirl flame did not occur when the flow
was forced at the natural frequency of the combustor. However, these
modes reappearedwhen the systemwas forced at higher frequencies.
Computational studies have shown that helical structures that are
present in nonreacting flows can be damped by combustion [13] or
low-frequency oscillations [24].

In this work, swirl-flow/flame interactions, their effect on the heat
release, and the resultant thermoacoustic coupling are investigated in
a gas-turbine model combustor (GTMC). The burner is a modified
version of a practical gas-turbine combustor that was operated with
swirl-stabilized, partially premixed, methane-air flames at atmo-
spheric pressure. Such GTMC conditions bridge the gap between
fundamental combustion experiments and large-scale experiments at
industrial conditions, allowing flames that exhibit many features of
practical systems to be studied inwell-controlled, rigorously defined,
and highly repeatable laboratory conditions. Furthermore, GTMC
flames allow for the application of many advanced laser diagnostics
techniques that are impractical at industrial operating conditions,
thus providing significant physical insight and detailed model
validation data.

Several experimental investigations have previously been
conducted on this burner over a range of operating conditions and
using various laser-based diagnostics [14,25–32]. Under some con-
ditions, flames in this combustor undergo large-amplitude self-
excited thermoacoustic oscillations, whereas under other conditions,
the flames operate stably. ACRZ and HVC have been observed at all
conditions, regardless of the thermoacoustic behavior. This burner
therefore provides an optimal configuration with which to study the
influence of these flow features on thermoacoustic instabilities. Here,
data from high-repetition-rate laser diagnostics are used to study
thermoacoustic coupling in three flames with various amplitude
thermoacoustic pulsations.

The flame structure in this burner was elucidated byWeigand et al.
[14] and Meier et al. [26] using OH/CH planar laser-induced fluo-
rescence (PLIF), laser Doppler velocimetry, and Raman scattering. It

was found that the flame did not stabilize directly on the fuel nozzle,
but was lifted by several millimeters, allowing the fuel and air to
partially premix before combustion began at the flame root. The
combustion behavior in the near field of the nozzle was influenced
both by mixing and finite rate chemistry. Reactions occurred in thin
layers and strong turbulence-chemistry interactions were observed to
cause local corrugation and extinction of these layers.

Such interactions were further elucidated by Sadanandan et al.
[27] and Stöhr et al. [28] using stereoscopic particle image
velocimetry (PIV) and OH-PLIF. It was shown that the dominant
flow structure was a helical vortex that circumscribed the burner
nozzle at a frequency that was independent of the acoustics.
Considerable mutual interaction between this HVC and flame was
observed. Note that in previous work, this vortical structure was
referred to as a precessing vortex core. However, precession of the
vortex core about the nozzle axis (i.e., change in the orientation of the
rotation axis) describes the motion of only a segment of the structure
at the nozzle exit. The term HVC is used in this work as we will be
interested in the dynamics of the entire flow structure, the majority of
which rotates about the central axis.

Recently, Boxx et al. [29] and Stöhr et al. [30] studied this
combustor using high-repetition-rate laser diagnostics. Stereoscopic
PIV, OH-PLIF, and OH* chemiluminescence diagnostics all were
applied at a sustained repetition rate of 5 kHz. This allowed
qualitative observation of several important flow/flame interactions,
including flame roll-up, local extinction, and possible autoignition
events. However, the high through-plane motion caused by the
swirling flow leads to difficulty in interpreting individual time
sequences; the measurements at a given time are not the continuation
of the samefluid andflame thatweremeasured at the previous time. It
is therefore not possible to directly determine if the observed events
are due to transient interactions or through-plane convection of
quasi-stable configurations. However, Steinberg et al. [31] showed
that signals from the temporally resolved planar measurements could
be used to identify the repeatable flow and flame dynamics in such
swirl flames. In this work, the analysis and diagnostic techniques that
were previously developed are used to rigorously study the influ-
ence of complex, three-dimensional, flow/flame interactions on
thermoacoustic coupling.

II. Experiment and Diagnostics

The gas-turbine model combustor used for this work has been the
subject of numerous previous studies in which the geometry is
described in detail [14,25–28]. Furthermore, the analysis presented
in this work is based on the experiments of Boxx et al. [29]. Hence,
only a brief description of the combustor and diagnostics is provided
here.

A. Gas-Turbine Model Combustor

The combustor is shown schematically in Fig. 1. Coswirling dry
air at room temperature was supplied to the flame through a central
nozzle (diameter 15mm, eight swirl channels) and an annular nozzle
(i.d. 17 mm, o.d. 25 mm contoured to an o.d. of 40 mm, 12 swirl
channels), both of which were fed from a common plenum.
Nonswirling CH4 was introduced through a ring composed of 72
square 0:5 � 0:5 mm channels between the air nozzles. The exit
plane of the fuel and central air nozzles was 4.5 mm below that of the
outer nozzle, and the latter was taken as the reference height (y� 0).

The burner was enclosed in an optically accessible combustion
chamber composed of fused-silica plates held in the corners by
Inconel® alloy posts. This allowed virtually unobstructed optical
access to the flame. The chamber had a square cross section of
85 � 85 mm and a height of 114mm.The exhaustwas formed from a
steel plate with a conical contraction, leading to an exhaust tube with
40 mm diameter.

Flames in this burner often exhibit self-excited thermoacoustic
pulsations, the magnitude of which depends on the specific flow
conditions; under some conditions, the pressure and heat-release
fluctuations couple to produce large-amplitude pulsations, and under
other conditions, the burner operates relatively stably [14,26]. Three
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different flames (summarized in Table 1) are studied here, each of
which underwent thermoacoustic pulsations of different amplitudes.
Each flame had a single pulsation amplitude. Flame 1 had a thermal
power of Pth � 7:6 kW, an equivalence ratio of �� 0:55, and was
close to the lean blowoff limit. This flame would periodically (1–2
times per second) lift off of the burner nozzle for approximately 0.1 s
and then reanchor. The liftoff and reanchoring has been investigated
elsewhere and is not the focus of the present work [30]. Instead, only
temporal segments during which the flamewas stably attached to the
nozzle will be used. Such temporal segments were typically between
0.5 and 1 s in duration and therefore provided several thousand
frames of continuous data from the high-repetition-rate diagnostics.
Furthermore, all processes in the combustor during these time
segments were steadily periodic at distinct frequencies. Flame 1 was
the quietest flame studied, with a root-mean-square (rms) pressure
fluctuation magnitude of p0 � 85 Pa (132.6 dB) at a frequency of
fa � 302 Hz. Flame 2 was operated at Pth � 10 kW and �� 0:65.
This flame exhibited slightly stronger pressure oscillations of p0 �
130 Pa (136.3 dB) at 305 Hz. Flame 3 also was operated at
Pth � 10 kW, but with an equivalence ratio of �� 0:75, and
underwent stronger thermoacoustic pulsations of p0 � 220 Pa
(140.8 dB) at 308 Hz. The swirl number for all flames was estimated
in earlier work from the ratio of the tangential and axial momentum
fluxes as S� 0:55. Detailed measurements of the boundary condi-
tions and thermochemical state have been performed forflames 1 and
3 using laser Doppler velocimetry and Raman scattering and are
available from the authors for simulation development and validation
[14,26].

All of the flow rates _m listed in Table 1 were controlled using
electromechanical mass flow controllers (Brooks) and monitored
using calibration standard Coriolis mass flow meters (Siemens
Sitrans FC)with an uncertainty of 1.5%. For all cases, the burnerwas

allowed to thermally stabilize at full power for at least 20 min before
data acquisition. During a data-acquisition run, approximately 4% of
the air mass flowwas diverted through a fluidized bed particle seeder
containing 1 �mTiO2 particles to enable thevelocitymeasurements.
The airflow was seeded only during the short data-acquisition
periods to reduce the accumulation of particles on the windows.
Because the flow was seeded for only a few seconds at a time,
window degradation was minimized and several data-acquisition
runs could be accomplished before window contamination signifi-
cantly affected the measurements.

The system was equipped with multiple ports for microphone
probes in the corner posts of the combustion chamber and in the
plenumwall. Figure 2 shows themean pressure oscillation,measured
using calibrated microphone probes (Brüel & Kjaer, Type 4939), at
several locations for flame 3. As can be seen, the shape, amplitude,
and phase of the pressure oscillation was essentially identical
everywhere in the combustion chamber. The plenum pressure signal
lagged the combustion-chamber signals by approximately 60�. The
pressure signals in flames 1 and 2 followed similar trends, which is
consistent with amultichamber Helmholtz resonatormode. Acoustic
simulations using Comsol have confirmed this resonation to be the
dominant mode, with the ratio of the plenum to chamber pressure
amplitudes peaking when the oscillations occur at the natural
frequency of the total system. A detailed analysis of the acoustic
eigenmodes relative to the flow-structure dynamics will be the
subject of future work.

Because of the similarity of the signals, only two probes were used
during the laser and optical measurements; one was mounted in a
corner post of the combustion chamber and onewas in the outer wall
of the plenum. Both probes were sampled at a rate of 20 kHz using a
multichannel data-acquisition system, which simultaneously
recorded the camera intensifier trigger for the PLIF system described
below. This allowed synchronization of the acoustic and laser-based
measurements. In all cases, the pressure signals recorded by the
microphone probes in the combustion chamber and air plenum had
essentially identical frequency spectra. The signal from the plenum
microphone exhibited less noise than that from combustion chamber,
but was shifted in phase by between 60–80� (determined from the
dominant frequency in the Fourier transformation), depending on the
flame. Because of the reduced noise, this plenum signal was shifted
in phase tomatch that in the combustion chamber and used to identify
the phase angle in the acoustic cycle at which each laser-based
measurement was acquired.

B. Stereoscopic Particle Image Velocimetry

Three-component planar velocity fields were measured at a rate of
5 kHz using stereoscopic PIV. The system, shown in Fig. 3, consisted
of a high-repetition-rate, dual-cavity, diode-pumped, solid-state Nd:
YAG laser (Edgewave, IS-6IIDE) and a pair of high-speed comple-
mentary metal-oxide semiconductor (CMOS) cameras (LaVision

Fig. 1 Gas-turbine model combustor with the fields of view for the

various diagnostics. The streamlines indicate the mean velocity field for

flame 3 measured in Sadanandan et al. [27].

Table 1 Flow and flame conditions

Flame Pth, kW � _mair, g=s _mCH4, g=s p0, Pa fa, Hz

1 7.6 0.55 4.7 0.15 85 302
2 10 0.65 5.4 0.20 130 305
3 10 0.75 4.7 0.20 220 308 Fig. 2 Mean pressure oscillation in combustion chamber and plenum

for flame 3.
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HSS5). Laser pulse pairs (532 nm, 2:6 mJ=pulse, 14 ns pulse
duration, 20 �s between pulses) repeating at 5 kHz were expanded
into a collimated sheet using a two-component cylindrical-lens
telescope. The sheet was then focused to a width of 0.7 mm at the
burner axis using a third cylindrical lens. Particle-scattered light from
the TiO2 seed was collected into the cameras using 100-mm-focal-
length commercial camera lenses set to f5.6 (Tokina).

The pair of CMOS cameras were mounted equidistantly from
opposite sides of the laser sheet in a forward-scatter configuration.
Image defocusing due to the angular configuration was corrected by
rotating the camera body with respect to the lens as stipulated by the
Scheimpflug criterion. Perspective distortion brought about by this
configuration was corrected by imaging a three-dimensional dot
target (LaVision type 7) that was placed in the measurement plane.
The distorted dot target was transformed to a normal coordinate
system using the LaVision DaVis 7.2 software package. The same
target images were used to align the fields of view from the PIV
cameras with that from the PLIF camera described below.

Vector fields were computed from the particle image spatial cross-
correlation using the LaVision DaVis 7.2 software package. An
adaptive multipass vector evaluation technique was used, with
interrogation boxes ranging from64 to 16 pixels. In dual-framemode
at 5 kHz, the PIV cameras had an active sensor size of 512�
512 pixels. The field of view imaged by the PIV system was 32 �
30 mm (shown in Fig. 1), resulting in a spatial resolution and vector
spacing of approximately 0.94 and 0.47 mm, respectively. Each
camera had 2.6 GB of memory, allowing 4096 image pairs to be
obtained over a measurement duration of approximately 0.8 s.

C. Planar Laser-Induced Fluorescence and Chemiluminescence

Laser-induced fluorescence was used to measure the planar
distribution of the OH combustion radical and was conducted
simultaneously with the PIV measurements. The OH-PLIF system
consisted of a high-repetition-rate, frequency-doubled Nd:YLF laser
(Edgewave IS-8IIE) pumping a dye laser (Sirah Cobra-Stretch
modified for kilohertz pumping). At 5 kHz, the pump laser delivered
3:8 mJ=pulse (19 Waverage output) at 523 nm with an 8.5 ns pulse
duration. The output of the dye laser was frequency-doubled and
tuned to excite theQ1�7� line of theA-X (v0 � 1, v00 � 0) transition of
OH at 283.2 nm. Tuning of the laser wavelength was checked daily
using a calibration burner. After frequency doubling, the average
output power of the dye laser at 283.2 nmwas 0.5Wor 0:1 mJ=pulse.
The laser beam was formed into a sheet with a height of
approximately 40 mm and a waist of approximately 0.4 mm using
three cylindrical lenses. The pixel resolution of the camera was
considerably smaller than the sheet thickness, which set the limiting
resolution. This sheetwas overlappedwith the PIV laser sheet using a
dichroic mirror and sent into the test section along the same beam
path.

Fluorescence of the OH radical in the range of 310 nm was
acquired with a CMOS camera (LaVision HSS6) equipped with an
external, two-stage, lens-coupled intensifier (LaVision HS-IRO) and
a 45 mm f1.8 UV lens (Cerco). The intensifier gate time was set to

500 ns and the PLIF laser pulse occurred between thefirst and second
PIV laser pulses on each cycle. The field of view imaged by the PLIF
system covered the entire width of the combustion chamber (85mm)
and extended from the nozzle exit to a height of 40 mm.

Background luminosity and elastic scattering were reduced by
using a 500 ns intensifier gate, a high-transmission (greater than 80%
at 310 nm) bandpass interference filter (Laser Components GmbH),
and a color glass filter (1-mm-thick WG295 Schott glass). The OH
images were corrected for the mean laser sheet intensity profile,
which was determined based on 1000 images of the fluorescence
from a uniform acetone vapor that was doped into the test area. A
correction also was made to remove the mean flame luminosity. The
PLIF images were filtered with a 0.4 mmGaussian filter (samewidth
as the sheet thickness) before further analysis to reduce high-
frequency pixel noise.

Since the chemical reactions in these flames occur in thin layers
[14], the local heat-release rate is the product of theflame surface area
and the reaction rate per unit area. However, OH radicals exist not
only in regions of heat release (i.e., the flame surfaces), but also in hot
gases above a temperature of approximately 1500 K [27]. The PLIF
signal from OH radicals therefore exists as broadly distributed
regions. The topography of the flame surface can be mapped from
these regions due to the fact that theOH signal increases rapidly in the
heat-release zone to superequilibrium concentrations before relaxing
back to equilibrium at a relatively slow rate in the postflame gases.
Hence, the flame surface is associated with regions of high OH
gradient. Steinberg et al. [31] developed a robust algorithm to
determine the flame topography and reduce it to mathematical
contours by simultaneously considering the OH signal, gradient, and
profile curvature. This algorithm is used here to compute the topog-
raphy of the reaction layers, each of which was treated as an
individual parametrically defined contour, f�’� � xf�’�êx�
yf�’�êy, where êx and êy are the respective unit vectors in the
radial and axial directions. The algorithm is able to detect and
disclude locally extinguished regions and nonburning interfaces
between hot gas mixtures and reactants. It is noted that, although the
flame area may be determined from the computed flame topog-
raphies, the reaction rate per unit areamay vary along theflamedue to
local stratification (i.e., nonhomogeneous equivalence ratio), strain
rate, and preheating due to product-gas recirculation. Nevertheless,
the derived topographies are sufficient to studymanymechanisms of
thermoacoustic instability.

Additionally, the line-of-sight integrated spontaneous emission of
electronically excited OH (OH*) was imaged separately from the
PLIF and PIVmeasurements, but under identical run conditions. The
camera/lens/filter arrangement for the chemiluminescence camera
was identical to that of the OH-PLIF camera; however, the intensifier
gate timewas extended to 25 �s in order to capture sufficient signal.
The field of view was not restricted by a laser sheet height, and
chemiluminescence was collected over an 85 � 85 mm region at a
rate of 5 kHz for a 0.8 s duration. Naturally excited OH exists only
within the thin reaction layers, and the chemiluminescence signal can
be taken as a qualitative indicator of the integrated heat-release rate in
the combustor [5]. Furthermore, although there are definite uncer-
tainties in using chemiluminescence as a quantitative or spatially
resolvedmeasurement, particularly in turbulent stratifiedflows, it is a
sufficiently accurate marker of the heat-release location for the
purposes of the following analysis [33–36].

III. Temporally Resolved Flow and Flame Dynamics

Steinberg et al. [31] present several short time sequences of
velocity and OH fields that demonstrate important flow/flame
interactions in flame 3. These include an oscillating reactant flux due
to coupling of the combustion-chamber pressure with the plenum,
large-scale wrap-up of the flame by a coherent vortical structure,
asymmetric reactant inflow and combustion driven by this coherent
structure, and small-scale corrugation of the flame by stochastic
turbulence.

To quantify the reactant flux oscillations, the volumetric flow rate
through the y� 0 plane ( _v) was computed by instantaneously

Fig. 3 Layout of simultaneous 5 kHz stereoscopic PIV and OH-PLIF
system.
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integrating the positive axial velocity across the nozzle exit.
Magnitudes of the rms volume flux oscillations normalized by the
long time averages taken over hundreds of thermoacoustic cycles,

denoted by � �$�, are listed in Table 2. As can be seen, the pressure
oscillations caused large flow-rate oscillations, reaching values of
over 50% of the mean in flame 3.

Furthermore, it was previously demonstrated that the observed
coherent structure in flame 3 was a large-scale HVC that circum-
scribed the burner at a frequency that was different from and greater
than that of the thermoacoustic pulsations (fh > fa) [29,31].
However, the HVC underwent a periodic deformation (i.e., axial
extension and contraction) over the thermoacoustic cycle (at fa). The
heat-release centroid xqc circumscribed the burner at the difference
between the HVC and thermoacoustic frequencies (fqc � fh � fa)
[31]. The HVC has been observed under all operating conditions
studied in this combustor. An HVC also is present in industrial gas
turbines and has been shown to greatly affect thermoacoustic
instabilities (e.g., Syred [10] and references therein).

The frequency of the flame centroid motion indicates that
understanding the interaction of the three-dimensional swirling flow
with the flame is essential for understanding the behavior of the heat-
release rate, and consequentially the thermoacoustic coupling. This
can be achieved by applying spatiotemporal proper orthogonal
decomposition (POD) analysis to the high-repetition-rate velocity
measurements. POD analysis is amathematically rigorousmethod of
extracting the most energetic features of a data set and has been
successfully applied to the study of turbulence and combustion
[23,24,29,31,37–41]. The mathematical basis of POD is well
established, and a description of the technique as applied here is
given by Steinberg et al. [31]. In summary, POD analysis from a
sequence of n temporally resolved velocity-field measurements
provides a set of n spatial eigenmodes Mj�x; y�, temporal coef-
ficients aj�t�, and eigenvalues �j, such that the eigenmodes form an
orthogonal basis for the original data set. The eigenvalues represent
the contribution of themodes to the overall kinetic energy of theflow,
and the particular property of POD analysis is that it provides optimal
convergence of the kinetic energy. That is, the sum of the highest k
eigenvalues for the POD basis is larger than for any other orthogonal
basis. Assuming that the eigenvalues are sorted in descending order,
the first modes represent the dominant flow features. The temporal
history of the velocity field from the k most dominant modes is
given by

uk�x; y; ti� �
Xk
j�0

aj�ti�Mj�x; y�

It is common practice in the application of POD to center the data
about themean, such that the first (most energetic) mode represents a
turbulent fluctuation. However, the mean flow pattern for the flames
studied here oscillated in intensity due to the coupling of the
combustion chamber with the reactant feed system. The POD was
therefore performed on the full data set such that M0�x; y�
represented the shape of the long-time-average velocity field; a0�t�
represented the periodic fluctuation in the reactant flow rate. The
temporal history and frequency spectrum of a0�t� were qualitatively
the same as those of _v�t�.

The most energetic turbulent modes of the POD for each flame
represented the HVC and its motion around the combustion chamber
[31]. Figure 4 shows the frequency spectrum of a1�t� from each
flame. Every cycle of these coefficients represents a cycle of theHVC
around the combustor from an arbitrary starting point in the
measurement plane. Hence, the dominant frequency in the spectrum

indicates the rotation frequency of the HVC. The smaller peaks are at
the sum and difference of the thermoacoustic and HVC frequencies,
whereas the thermoacoustic frequencies themselves do not appear,
because oscillations at fa are represented by different modes of the
POD. The HVC frequency, taken as the location of the peaks in
Fig. 4, are listed in Table 2. Previous studies of HVCs in nonreacting
and unconfined reacting flows have shown that the HVC frequency
increases linearly with the total flow rate and also can be affected by
the thermochemical properties of the flame [10]. Correspondingly,
theHVC frequency inflame 2was higher than those inflames 1 and 3
due to the higher total flow rate, but the frequencies did not vary in a
purely linear manner due to the different global equivalence ratios.
Note that the HVC frequency for each flame was very steady, with a
full width at half-maximum in the spectral peak of only a few hertz.
However, the instantaneous flow rate into the combustion chamber
could vary by over 50% during a thermoacoustic cycle as noted
above in the case of flame 3. This indicates that, although the overall
rotation frequency varies linearly with flow rate, it is insensitive to
high-frequency flow-rate fluctuations. There was no evidence of
widely varyingHVC frequencies in anymode of the POD analysis or
from individual measurement sequences.

Figure 5 shows the slice of the HVC that intersected the mea-
surement plane at three different instants during one cycle around the
burner for flames 1 and 3. The images were reconstructed from
the zeroth–10thmodes of the POD, which contained over 70% of the
total turbulent kinetic energy of the flow. Furthermore, over 90% of
the turbulent kinetic energy of modes exhibiting coherent fre-
quencies (in which there were distinct spectral peaks) was contained
in this subset. The remainingmodes generally represented stochastic
turbulence in which the energy was distributed over a range of
frequencies. Hence, these images represent the dynamics of the
periodicflow structureswith themajority of the stochastic turbulence
removed.

The rotation of these HVCs around the burner had approximately
the same period of around 2 ms (fh 	 500 Hz). In both cases, the
HVC began with its lowest spiral on the left side of the measurement
plane, moved approximately 180� around the burner in 1 ms, and
then returned to its original azimuthal position in 2 ms. In the case of
flame 1, the axial distance between the helix branches that intersect
the measurement plane was constant throughout the time sequence.
In flame 3, however, the helical vortex underwent significant
contraction in the axial direction; when the HVC returned to its
original azimuthal position, the axial distance between the branches
was reduced. It will be demonstrated in Sec. V.B that these axial
dynamics are periodic over the thermoacoustic cycle, not the HVC
motion around the burner. It also will be demonstrated that the
magnitude of the axial deformation is dependent on themagnitude of
the thermoacoustic oscillation. The HVC in flame 1 exhibited low-
amplitude axial dynamics, the HVC in flame 2 exhibited moderate

Fig. 4 Frequency spectra of a1�t� indicating the frequency of the HVC

motion around the burner in each flame.

Table 2 Properties of flowfield fluctuations

Flame fa, Hz _v= _v
$ fh, Hz fqc, Hz

1 302 0.25 507 204
2 305 0.45 555 250
3 308 0.55 515 207
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amplitude dynamics, and the HVC in flame 3 exhibited the largest-
amplitude dynamics.

As previously shown by Steinberg et al. [31] and mentioned
above, the OH* chemiluminescence measurements in flame 3
showed that the heat-release centroid circumscribed the burner at
fqc � 207 Hz, which can nowbe identified as the difference between
the HVC frequency (fh � 515 Hz) and the thermoacoustic
frequency (fa � 308 Hz). The power spectrum of the radial heat-
release centroid location for each flame is shown in Fig. 6 and the
frequency of the spectral peaks are listed in Table 2. As in flame 3, the
heat-release centroid in flames 1 and 2 circumscribed the burner at
the difference between their respective HVC and thermoacoustic
frequencies. Furthermore, the amplitude of the radial centroid
motion increased fromflame 1 toflame3. Itwill be shown inSec.V.A
that this motion is related to the axial dynamics of the HVC and
therefore increases with thermoacoustic amplitude.

IV. Doubly-Phase-Resolved Analysis

Since the interaction of the HVC and the flame over an acoustic
cycle has a large effect on the heat-release rate, correctly interpreting
the flow and combustion from planar measurements requires
simultaneous consideration of both the pressure fluctuation and the
azimuthal position of the HVC with respect to the measurement
plane. This can be achieved by resolving the temporal measurement
sequence with respect to the phase of both phenomena [31]. The
phase in the acoustic oscillation (�a) was determined from the
plenum microphone measurements, and phase of the HVC motion
(�h) was measured from the temporal coefficient of the first POD
mode, which was sinusoidally periodic over the HVCmotion around
the combustion chamber [31]. For each process, the time at which the
signal crossed zero from positive to negative was taken as the
beginning of a cycle. Any measured variable � can then be

decomposed into three parts, a long time average �
$
, a doubly-phase-

resolved mean oscillatory component �ap��a; �h�, and a turbulent
fluctuation �t�t�, such that

��t� � �
$
� �ap��a; �h� � �t�t� (2)

Note that the HVC phase angle is a measure of the position of the
HVC from an arbitrary starting point relative to the measurement
plane. The choice of this starting point does not affect the results as
long as a consistent definition is used.

For the purposes of statistical analysis, each cycle of each process
was divided into eight discrete phase angles, shown in Fig. 7, and the
actual phase angles of the instantaneous measurements correlated
with the closest combination of discrete phase angles. This resulted
in 64 phase-angle combination pairs describing the repeatable
combustor dynamics. Throughout the remainder of the text, all phase
angles will be given in terms of the numbering scheme in Fig. 7. For
notational convenience, the sumof the long time average and doubly-
phase-resolved component will be denoted as

�
$ ap��a; �h� � �

$
� �ap��a; �h� (3)

Steinberg et al. [31] showed that the doubly-phase-resolved

statistics, namely, �
$ap
��a; �h�, provide a good representation of the

repeatable flow and flame configurations, where the flow is
represented by �� u and the flame is represented by the flame
surface density (FSD) field, ���. The flame surface density
describes the area of the reaction layers (Af) in a given volume (�V)
and is given by �� �Af=�V. Here, the two-dimensional, doubly-
phase-resolvedflame surface densityfieldwas calculated by dividing
the measurement domain into 2 � 2 mm cells and determining the
doubly-phase-resolved mean reaction-layer length in each cell. A
discussion of the statistical uncertainty in the doubly-phase-resolved
analysis is given in Appendix A.

Fig. 6 Power spectra of the radial location of the intensity-weighted

heat-release centroid in all flames (xqc).

Fig. 5 Dynamics of the helical vortex core reconstructed from the

zeroth–10th modes of the POD in flames 1 and 3 (u10�t��, both of which
had frequencies of approximately 500 Hz. The HVCs circumscribed the

nozzle in 2 ms and the HVC for flame 3 exhibited axial dynamics that

were periodic over the thermoacoustic cycle. The flow is visualized in

terms of the resolved vorticity!z between�20; 000 s�1 and 20; 000 s�1.
Axes units are in millimeters.

Fig. 7 Definition of phase angles for periodic analysis.
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V. Oscillatory Flow and Flame Dynamics

A. Qualitative Analysis of HVC and Flame Behavior

The above discussion illustrates some of the complex flow and
flame processes occurring in this combustor. Understanding such
processes is necessary in order to describe the fluid mechanical
mechanisms affecting the thermoacoustic instability. However,
before quantitatively analyzing these processes, it is informative to
qualitatively observe their thermoacoustically coupled dynamics. To
aid in this visualization, the doubly-phase-resolved statistics will be
used to reconstruct the oscillatory flow and FSD behavior in three
dimensions at each discrete phase angle over the thermoacoustic
cycle. For a fixed �a, the statistical variation of the flow and flame
with changing �h represents different slices of the average 3-D fields
at that �a. The HVC phase can be thought of as representing the
physical angle in the combustor throughwhich each slice is acquired.
For example, at �a � 3, the doubly-phase-resolved planar fields of

u
$ap
y (�a � 3,�h � 1 . . . 8) represent eight different slices of themean

3-D axial velocity field at the minimum of the pressure cycle. The
3-D structure of the flow may be deduced by interpolating between
these various slices. By performing this operation at each �a, the
dynamics of the 3-D flow and FSD fields over the thermoacoustic
cycle can be visualized. If the reconstruction is taken such that the
zero azimuthal angle is at a fixed �h (�h � 1 used here), the 3-D
reconstructions are done in a HVC-fixed reference frame. This frame
rotates in the laboratory reference frame at fh.

The planar three-component velocity measurements allow
reconstruction of the full three-component three-dimensional

velocity field, albeit with low resolution in the azimuthal direction.
Because of this low azimuthal resolution, all velocity gradients are
calculated only from the measured in-plane values (i.e., only !z).
For the flame surface density, the reconstructed fields are 3-D

topographic maps of the planar�
$ap

fields, not the three-dimensional
FSD [42]. Such topographies are sufficient for examining the flame
dynamics.

Figures 8 and 9 show the dynamics of the reconstructed 3-D HVC
and CRZ at two phases of the thermoacoustic cycle for flame 2,
which were determined from the doubly-phase-resolved statistics.
The flame 2 flow structures are shown because the HVC intersected
the measurement plane more times than in flame 3 and underwent
larger thermoacoustically coupled dynamics than in flame 1. The
HVC is visualized in terms of a vorticity magnitude isosurface

(!
$ap
z � 5000 s�1), and the CRZ is visualized in terms of the zero

axial velocity isosurface (u
$ap
y � 0). Various other methods to

visualize the HVC also were tested. These include the �2 criterion
[43], the� criterion [44], and the swirling-strength criterion [45]. A
detailed comparison of differentmethods for visualizing vortex cores
is presented by Chakraborty et al. [46]. Although these methods
provide a threshold-independent method of visualizing the HVC,
their precise meaning can be ambiguous in the presence of the large
density, species, and temperature gradients associated with reacting
flows. Furthermore, the flow structures determined by all methods
were qualitatively the same, exhibiting only minor differences in the
boundaries and cross-sectional centroid positions. For ease of
comparison with previous results, the abovementioned vorticity and
axial velocity isosurfaceswill be used to visualize theflow structures.

The thermoacoustically coupled HVC dynamics and their effect
on the CRZ are clearly illustrated in these figures. At low
combustion-chamber pressure (�a � 3), the HVC is contracted
axially and radially. Several spirals of the HVC were present in the
PIV field of view and these spirals caused large-scale corrugations of
the CRZ. When the HVC was extended at the maximum pressure
(�a � 7), fewer spirals were in the field of view and the CRZ was
considerably less corrugated.

Steinberg et al. [31] showed that there were significant
thermoacoustically coupled flame surface area oscillations asso-
ciated with periodic reaction-layer corrugation at the scale of the
HVC. That is, at some phase angles in the thermoacoustic cycle, the
HVC interactedwith theflame to createflame area, and at other phase
angles it did not. Figure 10 shows the interaction of the HVCwith the
flame surface density field at two phase angles of the thermoacoustic
cycle in flame 2. The FSD is represented by an isosurface at
approximately half of the peak value,whichwell represents the shape
of the overall 3-D field. The qualitative description of the relative
flame and HVC shapes is insensitive to the particular isosurface
value.Although velocitymeasurements onlywere taken in the region
of the burner nozzle, it clearly can be seen that theHVC interactswith
the flame throughout the combustor volume and that the degree of

Fig. 8 Three-dimensional HVC (!
$ap

z � 5000 s�1) and CRZ

(u
$ap

y � 0 m=s) dynamics over an acoustic cycle in flame 2 from the

doubly-phase-resolvedmean vorticity and axial velocityfields. Axis units

are in millimeters.

Fig. 9 Relative shapes of the HVCs (!
$ap

z � 5000 s�1) in flame 2 at the

minimum (�a � 3) and maximum (�a � 7) combustion-chamber

pressure. Axis units are in millimeters.
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interaction changes as the HVC deforms over the thermoacoustic
cycle. In this flame, the HVC was associated with greater flame
corrugation when it is axially contracted.

In addition to illustrating these oscillating large-scale corrugations
of the flame surface, Fig. 10 also shows that the flame undergoes
radial dynamics over the thermoacoustic cycle. Figure 11a shows a
flame surface density isosurface at twice the value of that shown in
Fig. 10, indicating statistically the region of highest heat release,
along with the HVC shape over the thermoacoustic cycle in flame 2.
In the HVC-fixed frame that is produced by the doubly-phase-
resolved analysis, the region of highest flame surface density rotates
counter to the HVC motion and circumscribes the burner over the
thermoacoustic cycle. In a laboratory fixed frame, the high-FSD
region rotates in the direction of the HVC motion at the difference
between the HVC and thermoacoustic frequencies. This process
explains the radial motion of the heat-release centroid that was
observed in the OH* chemiluminescence measurements.

It previously has been observed that the asymmetry in the flame
was associated with a deflection of the inflowing reactants caused by

the proximity of a HVC branch downstream of the burner nozzle
[31]. Since the HVC undergoes axial contraction and extension, the
azimuthal locations at which the HVC is in proximity to the nozzle
oscillated over the thermoacoustic cycle. This process can be further
elucidated by Fig. 11b. In this figure, the arrows indicate the location,
direction, and magnitude of local maxima in the radial velocity. It
clearly can be seen that the local maxima are associated with the
lower boundary of the HVC and that the azimuthal position of the
highest-magnitude radial velocity changes with the HVC shape.
Note that the HVCs at�a � 1 and 7 appear to have similar shapes but
cause different radial velocity patterns. However, it will be shown in
Sec. V.B that the lower portion of the HVC at these phase angles
actually have quite different shapes; the lower portion is more axially
contracted at �a � 1 and therefore causes a different radial velocity
pattern.

B. Quantification of HVC Behavior

From the above discussion, it is clear that the axial deformation of
the HVC over the thermoacoustic cycle greatly influences the
oscillatory flame behavior. It is therefore beneficial to quantify
the dynamics of this deformation. To do so, the locations at which the
HVC spirals intersected the measurement plane were identified by
local peak vorticity magnitudes in an alternating pattern of positive

and negative !
$ap
z extrema on each side of the burner axis in the axial

direction. The shape of the HVC helix in all flames is shown in
Fig. 12 at three phase angles of the thermoacoustic cycle. Once again,
the axial deformation of the HVC is apparent. In all cases, the highest
measured branch of the HVC at �a � 3 was relatively low,
representing an overall contraction of the HVC. Conversely, at
�a � 7 the highest branch was farther downstream than at �a � 3,
representing an overall axial extension. The overall shapes of the
HVC in flames 1 and 2 were similar, and the HVC in flame 3 was
considerably flatter. Furthermore, the amplitude of the axial
deformation can be seen to increase with the pressure oscillation
amplitude from flame 1 to flame 3.

These dynamics are further elucidated in Fig. 13, which shows the
axial position of the HVC (yh) versus the angular position along the
helix (�h) at different �a in each flame. The HVC undergoes similar
dynamics in all flames. Starting at �a � 1 (p� �p and dp=d�a < 0),
the lower portion of the helix was axially contracted and the upper
portion was extended. This is indicated by the low and high slopes of

Fig. 10 Measured interactions of the HVC (!
$ap

z � 5000 s�1) with

the flame surface density field (representative isosurface of

�
$ap

� 0:12 mm�1) in flame 2. The dynamic deformation of the HVC

causes changing large-scale corrugation of the flame.

Fig. 11 Mechanism causing the heat release to circumscribe the combustor at fqc. Images shown are for flame 2 and are in a HVC-fixed frame that

rotates in the laboratory frame at fh.
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the yh curves at low and high �h, respectively. As the combustion-
chamber pressure dropped (�a � 3), the upper portion of the HVC
axially contracted, resulting in the most compact helix in each flame.
During the subsequent pressure rise, first the lower portion of the
HVC axially extended (�a � 5), followed by the upper portion
(�a � 7). At this latter pressure, the HVC was in its most axially
extended configuration overall. This indicates that axial deformation
of the HVC occurs as a wave, with different portions of the helix
being displaced in different directions at different phases in the
pressure cycle.

This also is demonstrated in Fig. 14, which shows the vertical
displacement of particular points on the helix over the

thermoacoustic cycle. In flame 1, the HVC was shaped such that it
was in the PIV field of view for several spirals. Displacements are
therefore shown at �h � �, 2�, and 3�. Fewer spirals were available
for the other flames. As can be seen, HVC spirals at different
downstream locations underwent axial displacement oscillations at
different phases in the thermoacoustic cycle. In particular, the peak
displacements of subsequent spirals in the axial direction tended to
occur approximately �=4 later in the thermoacoustic cycle. This lag
corresponds well to the mean convective time between spirals,
indicating that theHVCdynamics are drivenby a convective process.
The amplitude of the axial deformation also can be seen to increase
with the amplitude of the thermoacoustic pulsations. However, the
exact process that sets the phase shift and amplitude is not yet known.
Further measurements with a larger field of view and over a larger
parameter set will help uncover this mechanism.

C. Periodic Flow/Flame Interactions

The above analysis has demonstrated the complex dynamics of
helical vortex cores in thermoacoustically oscillating swirl flames
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Fig. 12 Shape of the HVC helices over the thermoacoustic cycle in all
flames. Axis units are in millimeters.

Fig. 13 Shape of the HVCs in terms of axial coordinate versus angle

along the helix.
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and that these dynamics have a large effect on the flame surface.
As the HVCs change shape over the thermoacoustic cycle, they
can interact with the flame in a periodic manner, causing
thermoacoustically coupled changes in the heat-release rate. The
POD analysis showed that the HVCs were, by far, the most energetic
flow structures. Hence, the periodic HVC/flame interactions may be
very significant in determining the thermoacoustic state of the
combustor.

To illustrate this further, the flow/flame interactions in the
thermoacoustically stable (flame 1) and unstable (flame 3) cases will
first be qualitatively compared. The details of the thermoacoustic
coupling will then be discussed in Sec. VI. Figure 15 shows the
reconstructed flame surface density field and HVC shape in flame 1
over the thermoacoustic cycle. Also shown are the mean combustor
pressure, integrated OH* chemiluminescence (heat release), total
flame area, and reactant volume flux oscillations. To compliment
these images, Fig. 16 shows typical instantaneous images of the
flame topography and flowfield at select pressure phase angles. It is
once again noted that the field of view for the PIVmeasurements was
smaller than that of the OH-PLIF measurements. Hence, the HVC
shapewas directlymeasured only in the vicinity of the burner nozzle,
but its influence can still be observed in the flame surface outside the
PIV field of view. Also, this discussion will focus on heat-release
oscillations driven by changes in the reactive surface area. The OH*
chemiluminescence measurements that provide the heat-release
curves were line-of-sight integrated and therefore did not provide the
spatial resolution necessary for the analysis. However, it can be seen
that the flame area oscillations account for a large portion of the
overall chemiluminescence oscillations.

At the peak of the pressure oscillation, the HVC was in its most
axially extended configuration.When in this configuration, the HVC
in flame 1 had a steeper angle than the flame surface relative to the
burner exit plane; themajority of theHVC resided downstream of the
flame in the burnt products. Both the doubly-phase-resolved 3-D
reconstructions and instantaneous measurements show a relatively
smooth flame. A single FSD corrugation can be seen in the lower
portion of Fig. 15 at �a � 7, where the HVC crosses through the
flame brush. In the instantaneous image (Fig. 16a), theflame segment
that would be corrugated by theHVC in the lower-left region appears
to be locally extinguished. As the combustion-chamber pressure
decreases, theHVC axially contracts as described above. In doing so,
it comes into contact with the flame. At the pressure minimum,
�a � 3, the FSDfield and instantaneous flame surface exhibit several
large-scale corrugations, which increase the flame area and the
overall heat-release rate. The 3-D corrugations are shown from a
different view point in Fig. 17 and are clearly associated with the
measuredHVC shape. Hence, in this thermoacoustically quiet flame,
the HVC appears to cause oscillations in the heat-release rate that are
largely out of phasewith the pressure oscillation. Also, the FSD field
undergoes large-scale elongation due to the reactant flux oscillation.

Fig. 14 Axial displacement of characteristic points along the HVC

helices over the thermoacoustic cycle.

Fig. 15 Reconstructed HVC (!
$ap

z � 5000 s�1) and flame surface density (�
$ap

� 0:12 mm�1) for flame 1 over the thermoacoustic cycle.
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However this effect is quite small due to the low amplitude of the
pressure oscillation.

A distinct difference in the HVC/flame interaction is observed in
flame 3. Figure 18 shows the flame surface density fields, HVC
shapes, and mean combustion-chamber oscillations for this flame,
and Fig. 19 shows typical instantaneousmeasurements. A significant
difference in the overall shape of the flame and HVC is apparent
compared with flame 1, with both features exhibiting a much lower
slope relative to the burner exit plane. Like flame 1, the HVC
underwent axial contraction and extension over the thermoacoustic
cycle. Unlike flame 1, the HVC at the peak of the pressure cycle
(�a � 7) overlapped with the flame surface and caused several large-

scale flame corrugations. As the pressure decreased, the HVC axially
contracted to the extent that, at the pressure minimum (�a � 3), it
was below the flame surface. Figure 20 shows the relative positions
of the HVC and FSD from a different view point than in Fig. 18.
While in this shape, the HVC caused only a minor corrugation in the
lower surface of the FSD field and the upper surface was smooth.
Hence, theHVC inflame 3 caused increases in theflame area through
wrinkling that were relatively in phase with the pressure oscillations.
The FSD field also undergoes substantially greater radial elongation
and contraction than was observed in flame 1 due to the larger
reactant flux oscillations. Finally, the FSD fields are asymmetric and
the location of the asymmetry rotates noticeably around the burner
over the thermoacoustic cycle. Referring to the top-view images, the
region of concentrated FSD rotates counterclockwise. This is the
same phenomena that was described in Fig. 11. As opposed to flames
1 and 2 (Figs. 10 and 15), the asymmetry is associated with
significant combustion in the outer recirculation zones (ORZs). Both
the amount and azimuthal position of this ORZ combustion varies
over the thermoacoustic cycle.

VI. Thermoacoustic Coupling

A critical parameter that determines the amplitude of the heat
release and acoustic oscillations is the net acoustic energy transfer�,

Fig. 17 Reconstructed HVC (!
$ap

z � 5000 s�1) and flame surface

density (�
$ap

� 0:12 mm�1) for flame 1 at �a � 3 (p� pmin) showing

large-scale corrugations from a different viewpoint than in Fig. 15.

Fig. 18 Reconstructed HVC (!
$ap

z � 5000 s�1) and flame surface density (�
$ap

� 0:12 mm�1) for flame 3 over the thermoacoustic cycle.

Fig. 16 Typical instantaneous measurements of the OH field, flame

topography, and vorticity field at the minimum and maximum of the

pressure oscillation in flame 1.!z between�20; 000 s�1 and 20; 000 s�1,
with the scale given in Fig. 5.

Fig. 19 Typical instantaneous measurements of the OH field, flame
topography, and vorticity field at the minimum and maximum of the

pressure oscillation in flame 3.!z between�20; 000 s�1 and 20; 000 s�1,
with the scale given in Fig. 5.
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defined in Eq. (1). The nature of the local energy transfer, #�x�, is set
by the phase shift, ��x�, between the pressure and heat-release
oscillations. Local oscillations with 0� < j�j< 90� produce positive
energy transfer (destabilizing), and oscillations 90� < j�j< 180�

produce negative energy transfer (stabilizing). The magnitude of the
local energy transfer is set both by the specific phase shift and the
local oscillation amplitudes. As was seen in Fig. 2, the amplitude of
the pressure oscillations was relatively uniform everywhere in the
combustion chamber. The local acoustic energy transfer therefore
depends primarily on the phase shift and the heat-release oscillation
amplitude. Using the present measurements, only the flame surface
area oscillations could be spatially resolved. However, comparing
the flame area oscillations and chemiluminescence oscillations in
Figs. 15 and 18 shows that the flame area oscillation is a good
representation of the overall heat-release oscillation amplitude and
phase. Therefore, the following discussionwill consider the coupling
of the pressure and flame area oscillations, with the overall (�) and
local ( ) couplings defined as

��
Z
V

 �x� dV �
Z
V

Z
2�

0

p0��a��
$ap
�x; �a� d�a dx (4)

In each cell used for the FSD calculation, the flame surface area
oscillation was periodic (roughly sinusoidal) over the thermoacous-
tic cycle. The amplitude and thermoacoustic phase shift of the
oscillation differed between cells. To illustrate the influence of the
HVC on thermoacoustic coupling, ��x� first was mapped by fitting

sinusoidal curve to the local �
$ap

oscillation and determining its
phase shift relative to the pressure oscillation. Figure 21 shows the
three-dimensional reconstruction of ��x� in flame 1. The phase-shift
distribution consisted of intertwined helical regions of in-phase and
out-of-phase thermoacoustic oscillations. Both in-phase and out-of-
phase regions could be found at almost all axial distances from the
burner, except for far downstream. This once again confirms that the
behavior of the HVC is very important to the thermoacoustic
oscillations. In the absence of the HVC, the phase shift at a given
axial location would be independent of the azimuthal location in the
burner. Because of the HVC, however, it is not until the far down-
stream position that a relatively circular torus of in-phase oscillations
occurred, whichwas associatedwith the large-scale elongation of the

flame due to the oscillating reactant flux. It is interesting to note that
the combustor volumes containing in-phase and out-of-phase
thermoacoustic oscillations are similar in this quiet flame.

To fully understand the thermoacoustic coupling, both the details
of the local phase shift and the magnitude of the heat-release
oscillations must therefore be considered. This can be done by
directly computing  from the doubly-phase-resolved flame area
oscillations using Eq. (4). Figure 22 shows positive and negative
isosurfaces of  at one-fourth of the maximum computed value in
each flame. The viewpoints were chosen to highlight the topographic
features and therefore change between flames. In flame 1,
immediately downstream of the burner exit were intertwined helical
regions of positive and negative coupling caused by the HVC/flame
interaction. Note the large helical region of negative coupling that
wraps fully around the burner. This region is caused by the increased
flame corrugations as theHVCaxially contracts near theminimumof
the pressure cycle. Hence, in this flame, the dynamic HVC/flame
interaction caused increased flame surface area (heat release) at
decreased combustion-chamber pressure and, therefore, negative
thermoacoustic coupling that helped to stabilize oscillations. Further
downstreamwas a toroidal region of negative coupling caused by the
periodic elongation of the flame.

From various prior figures, it can be seen that the FSD fields and
HVCs in flames 1 and 2 had similar shapes. Likewise, the major
features of the thermoacoustic coupling in these flames were similar.
That is, flame 2 contained intertwined helical regions of positive and
negative coupling downstream of the burner exit. However, the
region of positive coupling was much larger, and the region of
negative coupling was restricted to a small volume near the burner
axis. The positively coupled helical region in flame 2 had a flatter
angle relative to the burner exit plane than in flame 1 and extended to
a greater distance downstream. This downstream branch interfered
with the negatively coupled toroidal region that was seen in flame 1,
and the corresponding region in flame 2 was restricted to one side of
the burner. It is therefore apparent that the HVC dynamics in this
flame resulted in more positive thermoacoustic coupling and helped
drive the oscillations. The change in the thermoacoustic coupling
relative to flame 1 is caused by a slight narrowing of the flame angle,
which brings the flame into contact with the HVC over the entire
thermoacoustic cycle (as opposed to only at the pressureminimum in
flame 1). Hence, it is clear that the opening angles of the HVC and
flame are very important in determining the thermoacoustic
coupling.

The importance of the HVC and flame shapes is further
emphasized in flame 3. It was previously observed that the FSD field
and HVC in flame 3 had considerably different shapes than the other
flames; both were flatter and there was considerable combustion in
the outer recirculation zones. The thermoacoustic coupling field in
this flame therefore has some different features than the other flames.
However, the intertwined helical regions of positive and negative
coupling still existed. These regions occurred as alternating pairs of
negative and positive coupling, beginning with a small negative
region near the nozzle exit and ending with a large positive region
downstream. The positively coupled helical region was considerably
larger than the negative region, which is related to an increase in the
overall flame corrugation when the HVC is in its axially extended
configuration as previously described. Two additional regions also
are observed, a large positively coupled region in the outer
recirculation zone (bottom corner of the combustor) and a smaller
negatively coupled region in the opposite corner. Flame 3 was the
only case in which there was combustion in the outer recirculation
zone, which was related to a large radial deflection of incoming
reactants by the compact HVC [31]. As shown in Fig. 18, the amount
and position of the ORZ combustion varied periodically over the
thermoacoustic cycle, as the reactantflux andHVC shapes oscillated.
The net consequence of the radially compact HVC causing ORZ
combustion, the oscillating reactant flux causing varying amounts of
ORZ combustion, and the changing azimuthal position of the
maximum radial velocity caused by the axial HVC dynamics, were
the larger positive and smaller negative regions of thermoacoustic
coupling.

Fig. 20 Reconstructed HVC (!
$ap

z � 5000 s�1) and flame surface

density (�ap
$ ap

� 0:12 mm�1) for flame 3 at�a � 3 (p� pmin). The HVC

was below the flame when axially contracted.
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Fig. 21 Three-dimensional reconstructions of the combustor regions in
whichflame surface area oscillationswere in phase (0� < j�j < 90�, light)

and out of phase (90� < j�j< 180�, dark)with the pressure oscillations in

flame 1. Axis units are in millimeters.
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From these observations, it appears that an optimal flow/flame
configuration is one in which the HVC has a slightly steeper angle
than the flame relative to the burner exit plane. In such a con-
figuration, the axial dynamics of the HVC causes increased flame
area as the combustion-chamber pressure decreases. This results in a
region of negative thermoacoustic coupling that can act as a natural
damper to oscillations.

Figure 23 shows the net positive (�p) and negative (�n)
thermoacoustic coupling in all flames versus the magnitude of the
thermoacoustic pulsations. These were computed by performing the
integral in Eq. (4) over the regions in which �x�> 0 and �x�< 0.

In the quiet flame 1, the total negative coupling was slightly greater
than the positive coupling. Moving to the louder flames 2 and 3, the
positive coupling increased at a greater rate than the negative
coupling, and the net thermoacoustic energy transfer was positive.

VII. Conclusions

The thermoacoustic coupling caused by dynamic flow/flame
interactions was investigated in a gas-turbine model combustor
through analysis of high-repetition-rate laser diagnostics. Three fuel-
lean, swirl-stabilized flames were investigated, each of which
underwent different amplitude thermoacoustic pulsations and had
flowfields dominated by a helical vortex core. By resolving the
measurement sequence with respect to both the phase in the
thermoacoustic cycle and the azimuthal position of the helical vortex
core, the repeatable oscillatory processes were reconstructed in three
dimensions. This allowed identification of the thermoacoustically
coupled flow and flame dynamics, their interactions, and how these
interactions affected the thermoacoustic phase-relationship and
energy transfer.

Under all conditions, it was found that the helical vortex cores
underwent axial deformation over the thermoacoustic cycle. At the
minimum combustion-chamber pressure, the helices were in their
most axially contracted configurations, and at themaximumchamber
pressure they were in their most extended configurations. However,
the displacement of particular spirals occurred at different points in
the thermoacoustic cycle, and the axial deformation appeared to be
associated with a convectivewave. The amplitude of the deformation
increased with the amplitude of the thermoacoustic oscillations.

The periodic deformation of the helical vortices caused them to
interact with the flame in an oscillatory manner over the
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Fig. 22 Three-dimensional isosurfaces of the thermoacoustic coupling. Dark isosurfaces are negative  and indicates the regions in which energy is

removed from the acousticfield.Light isosurfaces are positive and indicates the regions inwhich energy is added from the acousticfield.Axis units are in
millimeters.

Fig. 23 Total positive and negative thermoacoustic coupling in each

flame.
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thermoacoustic cycle. Depending on the relative shapes of the flame
and the helices in their axially extended and contracted con-
figurations, these interactions caused oscillations in the flame surface
area at different thermoacoustic phase angles. Hence, this behavior
influenced the thermoacoustic state of the combustor.

To investigate this further, the local thermoacoustic coupling was
determined in three dimensions throughout the combustor volume.
In all cases, intertwined regions of positive and negative coupling
occurred near the burner nozzle due to the helical vortices. In the
quietest flame, the helical vortex created a large region of negative
coupling that helped damp the thermoacoustic oscillations. In the
moderately louder flame, the shapes of the helix and flamewere such
that there was a large helical region of positive thermoacoustic
coupling that contributed energy to the thermoacoustic pulsations. In
the loudest flame, positive thermoacoustic coupling occurred in both
a large helical region and in the outer recirculation zone.

From this analysis, it is clear that the presence, shape, and
dynamics of large-scale coherent vortical structures have a sig-
nificant impact on the thermoacoustic state of combustors. Further-
more, the HVC dynamics can either damp or drive the instability,
depending on the relative shape of the HVC and flame. The optimal
configuration in this burner appears to be one inwhich theHVChas a
slightly steeper angle than the flame relative to the burner exit plane.
In this configuration, the HVC causes increased flame area at the
minimum of the pressure fluctuation (when it is axially contracted),
thus removing energy from the thermoacoustic oscillations.

It is therefore necessary to systemically study flame and flow
structures in these swirl flames, in order to provide better predictive
capabilities of their behavior. It appears possible that, if robustly
understood and properly tuned, helical vortex cores may provide an
effective means of passively extracting energy from thermoacoustic
pulsations. Furthermore, this study has demonstrated an analytical
method of spatially mapping thermoacoustic coupling in complex
and practically relevant flowfields. The application of this technique
to more industrial-like conditions will be performed in the future.

Appendix A: Uncertainty Analysis

The fundamental source of uncertainty in the velocity
measurements is inaccuracies in the instantaneous fields computed
from the PIV data. Based on a 
0:1 pixel uncertainty of the cross-
correlation peak-finding algorithm, the random uncertainty of the
PIV measurements was estimated in Boxx et al. [29] to be
approximately 5%.

The accuracy of the doubly-phase-resolved mean fields in
representing the repeatable flow dynamics is described by the
standard deviation of the doubly-phase-resolved instantaneous
measurements about themean and the number ofmeasurements used
to compute the mean. Typically, about 125 instantaneous mea-
surements were used at each of the 64 discrete phase-angle combi-
nations. Integrated over the entire field of view, the average
uncertainty in the mean fields was around 20%. However, in
locations with high-velocity gradients, this could be as high as
approximately 50%.

There are two major contributors to the variance in the velocity
fields. First, the flow is not perfectly oscillatory, but exhibits cycle-to-
cycle variability and stochastic turbulence. Second, the continuous
acoustic and HVC signals were sorted into eight discrete phase
angles. Hence, any nominal phase angle at which the statistics are
reported actually contains data over a two-dimensional band,
including �nominal � �=8 to �nominal � �=8. Considering a particular
slice (�h) of the flow, if the system were perfectly oscillatory, the
variance in the mean due averaging the signals over the
thermoacoustic bandwidth (l� �=4) is

E��a� �
1

l

�Z
l=2

�l=2
�sin��a � �� � sin��a��2 d�

�
1=2

(A1)

This function is plotted in Fig. A1 and reaches maxima at �a � 0 and
�, where the sin function has its greatest slopes. At these points in the
thermoacoustic cycle, the variance in the measured mean would be
25%, regardless of any nonoscillatory aspects of theflow.Also plotted

in thisfigure is the uncertainty in themeasureddoubly-phase-resolved
mean axial velocity over the thermoacoustic cycle, averaged across
the field of view at �h � 1 in flame 3. This is the combination of
parameters which had the greatest uncertainty. As can be seen, the
uncertainty in the measurements also oscillated over the
thermoacoustic cycle and had similar peaks to the theoretical curve.
As expected, the measured uncertainty was always greater than the
variance purely due to discretization, generally being about 10–15%
higher. Improvements to the statistical convergence could therefore be
accomplished both by increasing the number of discretization points
and increasing the number of measurements at each point. Future
measurements will attempt to employ approximately 20,000 planar
measurements distributed across 144 phase-angle combinations.

Uncertainty in the reported flame surface density arises from the
same discretization process as in the velocityfields, and also from the
use of the OH-PLIF images to map the flame surface. Flame surface
mapping from OH gradients is quite robust and the results presented
are independent of any threshold values used during processing (over
a reasonable range).

Calculation of the thermoacoustic coupling involves the integral of
the product of two statistical quantities, the pressure and flame
surface area. The pressure oscillation was quite regular in all cases
and the majority of the uncertainty arose from discretization. To
obtain an upper bound on the  uncertainty, the integral in Eq. (4)
was calculated using the measured signals, but displacing each point
in the pressure oscillation upwards or downwards by 25% of its
particular amplitude and each point in theflame area oscillation in the
opposite direction by 35%. In cases where the two signals were
highly in phase or out of phase, the change in the computed coupling
could be as large as about 25%. Note that this value only matches the
lower displacement amplitude because, inevitably, there was some
cancellation of the noise at different phase angles of the cycle. In
cases where the two signals were approximately �=2 out of phase,
the self-cancellation of the noise was greater and only about 15%
uncertainty was observed.
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