elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Kontakt | English
Schriftgröße: [-] Text [+]

How sensitive are estimates of carbon fixation in agricultural models to input data?

Tum, Markus und Strauss, Franziska und McCallum, Ian und Günther, Kurt P. und Schmid, Erwin (2012) How sensitive are estimates of carbon fixation in agricultural models to input data? Carbon Balance and Management, 7 (3), Seiten 1-13. DOI: doi:10.1186/1750-0680-7-3.

Dieses Archiv kann nicht den gesamten Text zur Verfügung stellen.

Offizielle URL: http://www.cbmjournal.com/content/7/1/3

Kurzfassung

Background: Process based vegetation models are central to understand the hydrological and carbon cycle. To achieve useful results at regional to global scales, such models require various input data from a wide range of earth observations. Since the geographical extent of these datasets varies from local to global scale, data quality and validity is of major interest when they are chosen for use. It is important to assess the effect of different input datasets in terms of quality to model outputs. In this article, we reflect on both: the uncertainty in input data and the reliability of model results. For our case study analysis we selected the Marchfeld region in Austria. We used independent meteorological datasets from the Central Institute for Meteorology and Geodynamics and the European Centre for Medium-Range Weather Forecasts (ECMWF). Land cover / land use information was taken from the GLC2000 and the CORINE 2000 products. Results: For our case study analysis we selected two different process based models: the Environmental Policy Integrated Climate (EPIC) and the Biosphere Energy Transfer Hydrology (BETHY/DLR) model. Both process models show a congruent pattern to changes in input data. The annual variability of NPP reaches 36% for BETHY/DLR and 39% for EPIC when changing major input datasets. However, EPIC is less sensitive to meteorological input data than BETHY/DLR. The ECMWF maximum temperatures show a systematic pattern. Temperatures above 20°C are overestimated, whereas temperatures below 20°C are underestimated, resulting in an overall underestimation of NPP in both models. Besides, BETHY/DLR is sensitive to the choice and accuracy of the land cover product. Discussion: This study shows that the impact of input data uncertainty on modelling results need to be assessed: whenever the models are applied under new conditions, local data should be used for both input and result comparison.

Dokumentart:Zeitschriftenbeitrag
Titel:How sensitive are estimates of carbon fixation in agricultural models to input data?
Autoren:
AutorenInstitution oder E-Mail-Adresse der Autoren
Tum, Markusmarkus.tum@dlr.de
Strauss, Franziskafranziska.strauss@boku.ac.at
McCallum, Ianmccallum@iiasa.ac.at
Günther, Kurt P.kurt.guenther@dlr.de
Schmid, Erwinerwin.schmid@boku.ac.at
Datum:März 2012
Erschienen in:Carbon Balance and Management
Referierte Publikation:Ja
In Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Nein
Band:7
DOI :doi:10.1186/1750-0680-7-3
Seitenbereich:Seiten 1-13
Status:veröffentlicht
Stichwörter:agricultural models, net primary productivity, EPIC, BETHY/DLR, land cover, weather
HGF - Forschungsbereich:Verkehr und Weltraum (alt)
HGF - Programm:Weltraum (alt)
HGF - Programmthema:W EO - Erdbeobachtung
DLR - Schwerpunkt:Weltraum
DLR - Forschungsgebiet:W EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):W - Vorhaben Datenprodukte für Klima- und Atmosphärenanwendungen (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Landoberfläche
Hinterlegt von: Markus Tum
Hinterlegt am:04 Apr 2012 13:28
Letzte Änderung:22 Apr 2013 13:03

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Copyright © 2008-2013 Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.