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Summary. Recently, robots have gained capabilities in both sensing and actuation,
which enable operation in the proximity of humans. Even direct physical interaction
has become possible without suffering the decrease in speed and payload. The DLR
Lightweight Robot III (LWR-III), whose technology is currently being transferred to
the robot manufacturer KUKA Roboter GmbH, is such a device capable of realizing
various features crucial for direct interaction with humans. Impedance control and
collision detection with adequate reaction are key components for enabling “soft
and safe” robotics. The implementation of a sensor based robotic co-worker that
brings robots closer to humans in industrial settings and achieve close cooperation
is an important goal in robotics. Despite being a common vision in robotics it has
not become reality yet, as there are various open questions still to be answered. In
this paper a solid concept and a prototype realization of a co-worker scenario are
developed in order to demonstrate that state-of-the-art technology is now mature
enough to reach this aspiring aim. We support our ideas by addressing the indus-
trially relevant bin-picking problem with the LWR-III, which is equipped with a
Time-of-Flight camera for object recognition and the DLR 3D-Modeller for gener-
ating accurate environment models. The paper describes the sophisticated control
schemes of the robot in combination with robust computer vision algorithms, which
lead to a reliable solution for the chosen problem. Strategies are devised for safe
interaction with the human during task execution, state depending robot behav-
ior, and the appropriate mechanisms, to realize robustness in partially unstructured
environments.

1 Motivation & Introduction

The idea of human and robot working together is of major interest for both
the academic community and industrial robot manufacturers. Pioneering ex-
amples of intimate collaboration between human and robot, which origin can
be found in [1], are Intelligent assist devices (IADs), as the skill assist de-
scribed in [2]. In 1983 a method was proposed at DLR for allowing immediate
“programming by touch” of a robot through a force-torque-sensor-ball [3], see
Fig. 1 (left).

In this paper, we propose an approach to effectively combine human and
robot capabilities for performing tasks in a partially unknown workcell, i.e. a



Fig. 1. The concept of sensor programming was developed at DLR in 1983 for
teaching robot paths and forces/torques simultaneously (left). The DLR Co-Worker
consisting of the DLR Lightweight Robot III, the DLR 3D-Modeller (DLR-3DMo),
and a Time-of-Flight Camera (ToF-camera) (right).

semi-structured environment. We elaborate the theoretical basis, prerequisites
regarding task execution and safe interaction mainly relying on sensor based
reaction strategies. The concept requires flexibility from the robot in terms of
sensor integration and programming. This flexibility is currently not available
in the state-of-the-art first generation industrial robots, designed mainly to
position objects or tools in six degrees of freedom (DoF).

However, for the second generation industrial robot, a fundamental paradigm
shift is required to enable the implementation of the robotic co-worker. This
concept is derived from a meaningful fusion of robots with innovative and
robust control concepts, so called “soft robotics” features, and exteroceptive
sensing as e.g. 3D vision sensing modalities for safely perceiving the environ-
ment of the robot. Together with additional sensing capabilities for surveil-
lance such technology will open entirely new application fields and manufac-
turing approaches. In order to develop and evaluate the proposed concept,
the DLR Co-Worker was constructed as a demonstration platform, see Fig. 1
(right).

Complementary sensor fusion1 plays a key role in achieving our desired
performance through the combination of complementary input information.
As demonstrated in [4] a prioritized and sequential use of vision and force sen-
sor based control leads to robust, fast, and efficient task completion using the
appropriate sensor information depending on the particular situation. Cur-
rently, we believe that parallel use of both is needed mainly for very specific
problems, which are usually irrelevant for industrial settings.
1 Please note the difference of complementary from competitive sensor fusion.



Presently, industrial robot applications require complete knowledge of the
process and environment. This approach is prone to errors due to model in-
accuracies. Our central approach is to use intelligent sensor-based reaction
strategies to overcome the weaknesses of purely model-based techniques. Thus,
we can deal with sensor noise and limited robot positioning accuracy. The
robot task is described in high-level functions encapsulated in the states of
hybrid automata, where transitions base on decisions made using sensor in-
puts. This enables the robot to react to ”unexpected” events not foreseen
by the programmer. These events are induced by the human behavior, which
cannot be completely modeled analytically, due to sensor errors, and by robot
inaccuracies. Apart from robust behavior, safety is of fundamental concern
[5, 6, 7] if human-robot cooperation shall ever be realized beyond the proto-
type phase. In terms of mechanical design it is not effective to attempt to use
large robots and try to make them sufficiently safe [8, 9]. We showed in recent
work that in physical human-robot interaction (pHRI) slight collisions with
the robot are not fatal, if robots with suitable mechanical design are used
and the proper sensor-based reaction strategies are implemented [10]. Fur-
thermore, the human is encouraged in our setup to physically interact with
the robot as a modality to ”communicate” with it and provide task-relevant
information. This also improves the fault tolerance level of the task since only
absolutely worst-case contacts are solved by a complete emergency stop in
contrast to approaches for current robots.

Apart from the described approach, the presented concept for realizing
the robotic co-worker is fundamentally different from classical industrial ones.
None of the components are supposed to be intrinsically fail safe, but the ap-
propriate combination of all components makes the system more safe, robust,
and reliable. We use multiple sensor information of the robot and external
sensing for increasing the error tolerance and fault recovery rate. The work
we present here is an attempt to merge our resources for safe Human-Robot
Interaction with the ones for robust exteroceptive and external sensing to
achieve the robotic co-worker. We will discuss how to extend our schemes and
the available solutions for particular problems and finally reach the stage of a
highly flexible state-based programming concept for various applications. This
task description allows for novel switching strategies between control modes,
sensory reaction strategies, and error handling.

In this overview paper we discuss mostly the overall concept. For further
readings and details on the methodologies the interested reader is referred to
the cited literature.

The remainder of this paper is organized as follows. First, the general
functional modes required for a robotic co-worker are described. Then, the
interaction concept is described in detail. Furthermore, the task description
performed autonomously by the robot is elaborated. Finally, the developed
concepts are applied to a robotic bin picking scenario with user interaction as
a case study in order to present their practical relevance and implementation.

2 Functional Modes

Currently, industrial settings incorporate, in most cases, simple sequences
of tasks whose execution orders are static, allowing sometimes some binary
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Fig. 2. Proximity and task partition (left) and modalities for multi sensor human
robot interaction in the DLR Co-Worker (right).

branching. Fault tolerance during task execution is, apart from certain coun-
terexamples2, usually not an issue due to the well designed environment.
Furthermore, human-robot interaction is not yet safely and effectively im-
plemented and the legal foundation for it is, to a large extent, non existent
at the current stage. In industrial settings a fault immediately leads to a
complete stop of the manufacturing process, i.e. robust behavior in a (semi-
)unstructured environment has not been addressed until now. We propose an
integrative and flexible approach to carry out the desired task in a very ro-
bust yet efficient way. At the same time, this approach is able to distinguish
between different fault stages, which stop the entire process and lower the
efficiency only in the absolute worst case. Flexible jumps within execution
steps are part of the concept and do not require some special treatment. In
order to optimally combine human and robot capabilities, the robot must be
able to quickly adapt to the human intention during task execution for both
achieving safe interaction and high productivity. Thus, the measured human
state is the dominant transition between the proposed functional modes.

Estimating the human state is a broad topic of research and has been
addressed in recent work [11]. The focus is often on estimating the affective
state of humans, which is of secondary interest during an industrial process.
The more relevant information is the physical state that the human currently
occupies, and the estimation of the human attention, so that a clear set of
sufficient behaviors can be selected and activated, which leads to robust and
reliable overall performance. This paper does not consider attention estima-
tion, instead focusing on the human state.

We compiled the following selection of physical state to provide sufficient
coverage for cases relevant to our study, also shown in Fig. 2 (left).

• oP: out of perception
• iP: in perception
2 Checking for a successful grasp is e.g. commonly used.



• iCM: in collaborative mode
• iHF: in human-friendly zone

oP denotes that the human is out of the perceptional ranges of the robot
and therefore not part of the running application. iP indicates that the hu-
man is in the measurement range of the robot, and thus its presence has to be
part of the robot control. iCM and iHF indicate whether a collaborative or
human-friendly behavior must be ensured. Each physical state is subdivided,
depending on the task. However, only when iCM = true, the collaborative
intention should be taken into account: This leads to a complex physical in-
teraction task. In this paper we will use the “hand-over and receive” process
as an example, see Fig. 2 (right).
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Fig. 3. Functional modes for the DLR Co-Worker.

The human state is primarily used to switch between different functional
modes of the robot which in turn are associated with fault behavior. As shown
in Fig. 3 we distinguish between four major functional modes of the robot in
a co-worker scenario:

1. Autonomous task execution: autonomous mode in human absence
2. Human-friendly behavior: autonomous mode in human presence
3. Co-Worker behavior: cooperation with human in the loop
4. Fault reaction behavior: safe fault behavior with and without human

in the loop

Their interrelation and transition conditions provide high flexibility in the
application design. In the first functional mode the robot is autonomously
fulfilling its given task without considering the human presence. The task is
carried out under certain optimality criteria, such as cycle time, in order to
maximize the productivity. In the second and third modes, we need a mean-
ingful partition of the task space which subdivides the given workspace of the
robot into regions of interaction. These incorporate the “hand” over schemes
as described in Sec. 3.2 and human-friendly behavior, whose core elements are



reactive collision avoidance and self-collision avoidance schemes. In the third
mode interaction tasks are carried out that have to be specified or generated
for fulfilling a common desired goal, involving a synergy of human and robot
capabilities in an efficient manner. These two modes form an integrative inter-
action concept, allowing seamless switching between each other. The fourth
mode defines the fault reaction behavior, addressing the appropriate and safe
state dependent fault reaction of the robot. It incorporates both the robust-
ness concepts during autonomous reaction, as well as human-safe behavior.
Since each mode possesses an underlying safety concept, it will be described
later in more detail.

3 Interaction Concept

In this section we describe the developed interaction schemes. First, the pro-
posed task space partition is outlined, followed by the interaction layer, differ-
ent collision avoidance techniques, as well as physical collision detection and
reaction for safe pHRI. Finally, the resulting safety architecture, which unifies
the different schemes, is presented.

3.1 Proximity and task partition

In case humans are in close proximity to robots in current industrial instal-
lations, the robots reside inside safety cages in order to prevent any physical
contact and thus minimize the risk for humans. However, when humans and
robots shall collaborate, such a plant design is no longer an option. The hu-
man location has to be taken into account in the control scheme and in higher
level control of the robot as an integral part of the system design. The previ-
ously introduced physical human states have to be mapped into a meaningful
topology shown in Fig. 2 (left), where the four distinct classes are indicated.
They should be established with respect to the task and the robot workspace
for assessing, whether the human does not have to be taken into account and
therefore, the robot still behaves autonomously regardless of the iP state. In
case the human does not enter the robot workspace, it is not necessary to
degrade the productivity of the robot. In this sense the functional mode of
the robot changes only, if the human clearly enters the workspace of the robot
(indicated by the inner circle). If the human has entered the robot workspace
a distinction between human friendly behavior (on the right side of the table
in Fig. 2 (left)) and the cooperative mode (and their respective submodes)
is required (on the left side of the table in Fig. 2 (left)). If perception is lost
while iP = true, the robot assumes a severe error condition, stops and waits
for further instructions. If the presence of the human was not detected at
all, i.e. a worst case from a safety point of view, various safe control schemes
ensure the safety of the human during possible unforeseen collisions.

Defining these regions is part of the application design and definition
phase. Furthermore, we introduce switching zones, which are boundary volu-
mina of pre-defined thickness between task partitions (see Sec. 3.3 for details).
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Fig. 4. Example for “hand-over” and “receive”. Underlined states incorporate ex-
plicit physical interaction.

3.2 Interaction layer

Interaction between robot and human is a delicate task, which needs multi-
sensor information. Furthermore, robust as well as safe control schemes
are called for to enable intuitive behavior. The main physical collaboration
schemes are “joint manipulation” and “hand over and receive”. “Parallel exe-
cution” may be part of a task, but usually without physical interaction. Some
work has been carried out on exchanging objects between human and robot
based on reaching gestures [12]. In [13] the concept of interaction history was
used to achieve cooperative assembly.

Figure 2 (right) shows the “hand-over” and “receive” implementation of
the DLR Co-Worker Central entity is the LWR-III with its soft robotics fea-
tures. As a default we utilize its high-performance impedance control, and
only switch to other schemes, such as position control, if necessary. The robot
is equipped with joint torque sensors in every joint. It is well suited for real-
izing various important features such as load loss detection and online load
identification without additional force sensing in the wrist. Collision detection
and reaction, depending on the potential physical severity of the impact and
current state, is a central feature used for detection and isolating contacts of
different intensity along the entire robot structure. By being able to distin-
guish different contact types, fault tolerant and situation suited behavior is
possible.

We utilize virtual walls for avoiding collisions with the environment
through control schemes. In order to realize an effective reactive behavior, it
is important to change stiffness, velocity, disturbance residuals (see Sec. 3.3),
trajectory generators, collision severity reaction strategies, and robot control



parameters on the fly within the lower level control rates (here 1 ms), holding
also during motion or state execution. With the combination of exteroceptive
sensing, capabilities of object recognition, tool surveillance, and human prox-
imity detection (shown in Fig. 2 (right)), we can achieve such aforementioned
complex processes as “hand-over” and “receive”, shown in Fig. 4. “Receiving”
or “handing over” the object is simply triggered by touching the robot at any
location along its entire structure or by using the proximity information from
the mounted exteroceptive sensors.

3.3 Absolute task preserving reaction: time scaling
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Fig. 5. Residual fusion for integrated trajectory scaling. Ψi is a normalization func-
tion and fsi a sigmoid function for time scaling, [10, 14].

While the robot is in human-friendly mode, its intention is to fulfill the
desired task time efficiently, despite human presence. In order to accomplish
this, it is necessary to equip the robot the robot with reactive motion genera-
tors that take into account the human proximity and thus present inefficient
task abortion.

Trajectory scaling preserves the original motion path and at the same time
provides compliant behavior by influencing the time generator of the desired
trajectory, see [10]. This scheme can be used to enable a position controlled
robot to react compliantly in such a way that it remains on the nominal path,
albeit with limited maximum forces in case of physical external disturbances.

A desired trajectory is usually parameterized with respect to time. If the
discrete sampling time Δt is modified in such a way that it is used to re-
spond to such external forces, it can be used to step back and forth along
the desired path, by “scaling the trajectory in time”. In our approach we use
physical contact residuals such as the estimated external joint torque, or the
external contact wrench, together with proximity based residual signals such
as the human-robot proximity, the human-switching zones proximity, and the
human-workspace proximity. The usefulness of the approach becomes appar-
ent when considering cases where humans are moving close to switching zones.
If the robot would simply use binary switching information about the current
state of the human, undesired oscillating behavior would occur due to the



imprecise motions and decisions of the human. By using the human proximity
to this border as a residual the robot always slows down and stops until the
human clearly decides his next action. This way, the user receives intuitive
visual feedback, indicating that the robot is aware of his presence and waits
for further action.

The fusion of the different residuals is shown in Fig. 5 for several aforemen-
tioned signals. This concept allows us to bring quantities of different physical
interpretation together and use them in a unified way for trajectory scaling.
Each residual is normalized3 and then nonlinearly shaped to be an intuitive
time scale. Depending on the current state, the user can choose suitable resid-
uals accordingly during application design.

3.4 Task relaxing reaction: reactive path deformation
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Fig. 6. Schematic views of the collision avoidance for two consecutive iteration
steps. The upper left figure denotes free motion, whereas the upper right one takes
into account a motion model of an external virtual object. The lower figure shows
the collision avoidance for a full dynamic simulation.

Apart form task preserving reaction as described in the previous subsec-
tion, reactive real-time reaction with task relaxation is an important element
3 Please note that we refer to an appropriate handling as e.g. projecting external

forces to the velocity direction of the robot or similar transformations.



for dealing with dynamic environments as well. A well known technique in
this respect is the elastic strips framework [15].

The subsequent method uses a decoupled second order impedance system
(mass-spring-damper) as a starting point and describes the (dynamic) envi-
ronment by means of virtual forces, which are generated with a motion model
of the according object, see Fig. 6 (upper). The virtual mass associated with
the robot is placed at the starting configuration xd(tn), ẋd(tn) of the robot,
whereas the equilibrium of the system is the desired goal configuration x∗

d.
The resulting trajectory of the excited system leads to (assuming no local
minima) a valid trajectory towards the goal. However, such a simple solution
by means of velocity and acceleration of the trajectory leads for most cases
to very undesired properties of the generated path. In order to overcome this
deficit we calculate the traverse path of the system mε,n(t ≤ tε) every time
step (incorporating the dynamic behavior of the environment) within a certain
reasonable time interval tε, but dismiss the time information associated with
it. In order to match a desired velocity ẋ′

d(tn+1), we search for the configu-
ration x′

d(tn+1) along the path that ensures this velocity. Thus, we keep the
smooth properties of the generated local path but the velocity of the robot
can be commanded independently. During (virtual) contact the velocity can
be additionally scaled similarly to the previously described trajectory scaling
method. Thus, due to the collision avoidance, the robot would continously re-
duce speed, or even retract, and at the same time actively avoid the upcoming
collision. Figure 6 (lower) shows the result for different starting points and the
common goal configuration of the robot. The nominal trajectory is a straight
line from different starting points to a common end point. The avoidance takes
place for a dynamic motion of the human towards the robot.

3.5 Dealing with physical collisions

In our recent work we concentrated on evaluating the injury severity for the
human during worst-case robot-human impacts [8]. Furthermore, we devel-
oped various control schemes to provide a high level of safety to the human
during desired physically interaction and unexpected collisions. Numerous so-
lutions against human injury are available. Crucial features for these solutions
are an effective physical collision detection and reaction. Furthermore, after
a collision is detected and isolated, an appropriate reaction has to be trig-
gered [10]. One possible solution is to stop the robot as soon as a collision
is detected. Another one is to switch from position control to zero-gravity
torque control [16] and let the robot react in a convenient compliant manner.
These approaches provide the possibility to divide the impact severity into
several stages, using a disturbance observer. This method for detecting con-
tacts is also able to give an accurate estimation of the external joint torques
τext, which in turn can be used to classify collisions with the environment
according to their “severity level”. This allows us to react variably to differ-
ent collision severity stages [14], leading to a collision severity based behavior.
Apart from this nominal contact detection, our algorithms are also able to
detect malfunction of the joint torque sensors, based on model inconsistencies
interpreted as a collision.



3.6 Safety architecture
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Fig. 7. Safety architecture of the DLR Co-Worker. Only the first two stages are
user specific.

Apart from gaining insight into mechanisms behind safe pHRI and isolated
tools, it is critical to determine how to apply the knowledge and methodologies
in a consistent and appropriate manner. We have developed schemes to utilize
these features appropriately in order to maximize task performance under the
constraint of achieving sufficient human-friendly behavior, see Fig. 7. Each
feature is shown at the according hierarchical level where it is introduced and
made available in the appropriate layer of the process.

Figure 8 outlines how the fault management and emergency components
are embedded as underlying components for each task. Every task has the
appropriate low-severity-fault tolerant components to make it robust against
external disturbances in general and prevent unnecessary task abortion. Each
of them activates their distinct safety set Sj which is compatible with the
particular goal (see Fig. 10 for details).

Figure 9 shows an example of an unexpected collision between a worker
and a human 1©, leading to a collision in layer FT L1. The robot switches to a
compliant behavior 2© after the collision is detected (CD). Due to the collision
reaction (CR), the robot is able to be freely moved in space. This could lead
to secondary collisions with the environment. Therefore, we have designed
nonlinear virtual walls (Fig. 2) with rigid properties to prevent physical col-
lisions of the robot and secure the sensitive parts as the ToF-camera and the
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3DMo. As a result, the human can simply grab the robot anywhere along the
structure and hang it like a tool into a predefined arbitrarily shaped virtual
potential trap4 (HI) 3©, which smoothly drags it in and keeps it trapped. The
human can then complete his task, which he intends to fulfill 4©, while the
robot waits (WT) for further action. After completion is confirmed (CF) in
5© the robot continues 6© with the interrupted task (GO). If this was not
the case, the robot stays in his constrained passive behavior until either a
confirmation for continuation occurs, or a human would drag him out of the
hang-in field, depending on a predefined direction of disturbance. Figure 10
shows how such behavior is triggered in a hybrid automaton and the safety
sets involved in this process.

Local FT
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Ti: GoTo X

Nominal task

}

human-monitor = on
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Fig. 10. Safe reaction to a collision in FT L1 under the assumption that the human
was not perceived to have entered the workspace. A simple and convenient behavior
is triggered, which can be realized by intuitive use of well designed state dependent
control scheme selection.

4 A Sensor Based Approach for Interactive Bin Picking

In this section we focus on describing our solutions to solve an industrially
relevant autonomous task by combining computer vision techniques with soft-
robotics features and embed it into an interaction scenario with the human.
To demonstrate the performance of our system during autonomous task exe-
cution, we address the classical bin picking problem, which is well known since
the mid-1980s. However, such problems have remained difficult to be solved
effectively. This sentiment can be found in different literature, as exemplified
below:

“Even though an abundance of approaches has been presented a cost-
effective standard solution has not been established yet.”

Handbook of Robotics 2008 [17]
4 This feature “feels” like a magnet.



We have combined environmental modeling, robust and fast object recogni-
tion, as well as quick and robust grasping strategies in order to solve the given
task. The setup depicted in Fig. 1 (right) serves as our demonstration plat-
form. It is further used for realizing a scenario where the human assembles
parts, which are supplied by the robot and, after a “hand over” and “receive”
cycle, sorted into a depot by the robot, see Fig. 16. This fully sensor-based
concept is entirely embedded in the proposed safe interaction concepts. The
intention of this application is to augment human capabilities with the assis-
tance of the robot and achieve seamless cooperation between each other.

4.1 Vision concept

The LWR-III is equipped with two exteroceptive sensors: the DLR 3D-
Modeller and a time-of-flight camera so that different proximity sensors with
complementary features can be used within this scenario.

DLR 3D-Modeller

Fig. 11. Generated 3D model from a series of sweep scans over the filled bin.

System: The DLR-3DMo is a multi-purpose vision platform [18], which is
equipped with two digital cameras, a miniaturized rotating laser scanner and
two line laser modules, see Fig. 1 (right). The DLR-3DMo implements three
range sensing techniques:

1. laser-range scanning [19]
2. laser-stripe profiling [20]
3. stereo vision

These techniques are applicable to a number of vision tasks, such as the gen-
eration of photo realistic 3D models, object tracking, collision detection, and
autonomous exploration [21].



Implementation: The laser-range scanner, used for securely determining
obstacles and free regions, provides range data enriched with a confidence
value. The proposed application employs the rotating laser range scanner for
two tasks. First, the wide scan angle of 270 degrees enables nearly complete
surveillance of the working range around the gripper. Secondly, the measured
distance data provides information about occupation of the space between the
jaws of the gripper and indicates whether a target object is located there.

The laser-stripe profiler is used for modeling the environment and can be
used for the localization of the bin or accurate modeling of the entire workcell,
see Fig. 11. The shown model was generated with a series of sweep motions of
the LWR-III across the scenario. The main purpose of the laser-stripe profiler
is to acquire accurate data for model generation, in contrast to the safety
functionality of the laser-range scanner.

Time-of-Flight camera

Fig. 12. Amplitude and depth data from view into the bin (left) showing large
signal noise (right).

System: The ToF camera Swissranger SR 3000, mounted on the robot,
has a resolution of 176 × 144 pixels. An important feature of this device,
beneficial for this application, is the ability to capture 21

2D depth images at
≈ 25 Hz. Unlike stereo sensors, ToF-cameras can measure untextured sur-
faces because the measurement principle does not depend on corresponding
features. Furthermore, due to the active illumination, ToF-cameras are robust
against ambient illuminations changes. These properties enable the recently
established use in the robotics domain for tracking, object detection, pose
estimation, and collision avoidance. Nonetheless, the performance of distance
measurements with ToF-cameras is still limited by a number of systematic
and non-systematic error sources, which turn out to be a challenge for further
processing.

Figure 12 highlights the non-systematic errors such as noise, artifacts from
moving objects, and distorted shapes due to multiple reflections. While noise
can be handled by appropriate filtering, the other errors mentioned here are
system inherent. The systematic distance-related error can be corrected by a
calibration step down to 3 mm, see [22].



Fig. 13. Multi-stage tracking architecture based on [23].

Implementation: Generally, the high sampling rate of the ToF-camera
guarantees fast object localization and robust object tracking performance
based on a three staged tracking architecture, see Figure 13. In each stage a
different algorithm processes an incoming depth image to provide a list of pose
hypotheses for the potential object, which is additionally tagged with a con-
fidence value. The stages are continously monitored and executed according
to suitable termination criteria or reentered for refinement.

The first stage is a global search, consisting of edge filtering and a Hough
transformation for identifying lines as initial hypotheses for the tube location.
In the second stage these hypotheses are locally consolidated and clustered by
a particle filter. Third, an Iterative Closest Point algorithm (ICP) provides an
accurate pose estimation of the target object at a frame rate of ≈ 25 Hz. Both
ICP, and particle filter directly process 3D data, and a 3D model of the target.
The 3D model is represented by a point set with corresponding normals. This
can be either generated from CAD models or surface reconstruction. The
object target can be localized and tracked with an accuracy of ≈ 7 mm.

4.2 Soft robotics control for grasping
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Fig. 14. Compliant grasping strategy.



The soft-robotics features of the LWR-III greatly provide powerful tools
to realize such a complex task as bin picking. Cartesian impedance control
[16] is used as a key element for robust grasping despite the aforementioned
recognition uncertainties. The impedance behavior of the robot is adjusted
according to the current situation in order to achieve maximal robustness.
Furthermore, the previously introduced strategies for fault detection are used
to recognize impossible grasps or unexpected collisions with the environment
based on force estimation. Furthermore, there are virtual walls preventing col-
lisions with the static environment. The robustness of grasping against errors
in object localization and errors in positioning due to the used impedance con-
trol is of great importance for this application. The grasping strategy shown in
Fig. 14 successfully copes with possible translational deviations in the range
of 55 mm before the grasp fails. Due to the compliant behavior of the robot
and gripper-object and object-ground friction, the object is rotated into the
firm grasp. The last image shows a case expected to be a failure. However,
due to the rotational stiffness we implemented along the axis perpendicular
to the image plane grasping can still be achieved.

4.3 Autonomous task execution
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OL = Object lost
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RT = Reached target

Bin Picking

Wait 4 Bin

BD = Bin Detected
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IG = Impossible grasp
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Fig. 15. Automaton for autonomous bin picking.

Figure 15 depicts the autonomous bin picking task automaton, which
merges the presented concepts into a high-level view of task description. The
application is comprised of object recognition, grasping, and sort-in phases5.
If the bin is depleted, the robot waits for further supply. Fault tolerant be-
havior is realized by introducing various branching possibilities for each state
execution. In case of failure, the robot recovers by monitoring conditions like
object recognition dropouts, load losses, or impossibility of grasps.
5 The initial view and sort-in frames are taught in torque control with gravity

compensation. This enables the user to freely move the robot to a desired config-
uration and save it in the application session.



4.4 Evaluation of grasping success

The efficiency and robustness of our approach was tested in a series of au-
tonomous grasps. For this evaluation we replenished the bin (Fig. 11) after
each successful grasp in order to have a filled bin and independent trials. On
average, the robot needed 6.4 s for one grasping process, which comprises ob-
ject detection from an arbitrary viewing position, approaching and grasping,
unbagging, and moving back to the initial viewing position. The robot was
able to grasp an object in every cycle for 80 trials, i.e. the overall cycle suc-
cess rate was 100%. This result was only achievable due to the fault tolerance
capabilities of the system along the entire process, such as the detection of a
physical impossibility of a planned grasp, the non-successful grasp (overall 3
times), loosing an object in tracking, or localization without any result. The
last fault was mainly caused by the fact that searched objects are often only
partially in the field of view, so that the robot had to move to a new view
position. All of these failure modes where detected or realized by the system
and induced a restart of the grasping process. Consequently, the number of
average views to recognize an object was Nview = 2.2.

4.5 Extension to interactive bin-picking

Figure 16 describes our implementation of an interactive bin-picking demon-
strator, merging the concepts for interaction and the autonomous capabilities
of the robot. The initial entrance into the scene by the human is not shown,
but is part of the demonstrator, i.e. it is assumed that the human has entered
the scene, the “way into interaction” is completed, and the human is part
of the process. 1© shows the view into the bin and the corresponding object
recognition (OR). Then, the robot grasps an object out of the bin 2© and
identifies it according to its weight, followed by a motion towards the human
(GH) in 3©. The “hand over” 4© then takes place, after which the robot waits
(WT) for the human to complete his process 5©. As soon as the human has
finished, the robot receives the object in a visual servoing loop (VS) in 6©.
Now, the classified object is sorted into (SI) one of the trays 7© and the robot
goes back to 1©. 8© and 9© show how human-friendly (HF) behavior is an
integrative part even in the presence of multiple humans. In 8© and 9© the
tool surveillance and the physical contact during task execution are shown,
respectively.

In summary, the system described here presents a versatile and robust so-
lution with standard components for achieving safe and effective human-robot
collaboration and a solution for the bin picking problem. Various explicitely
non-trained test subjects were able to intuitively use the system.

5 Conclusion & Outlook

In this paper we proposed a general concept for the robotic co-worker and
developed a prototype demonstration for validation based on commercially
available technology. We outlined an integrative concept for combining soft-
robotics concepts with multi-sensor vision schemes. Flexible hybrid automata
can robustly and safely control the modalities of the co-worker in a partially
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Fig. 16. Interactive bin picking.

known environment and especially handle the complexity as well as the neces-
sary branching factor during the execution of the tasks. Based on our results
in safe physical Human Robot Interaction we were able to effectively com-
bine various control and motion schemes with vision sensing capabilities for
the robot to effectively accomplish the task with sufficient safety. Further-
more, exteroceptive sensing is used in combination with compliance control
for implementing industrially relevant autonomous tasks. The fusion of these
concepts leads to high fault tolerance, supported by the results of the pre-
sented bin picking application. The thorough use of multi-sensor information
enabled us to combine the proposed interaction and robust autonomy concepts
needed for the robotic co-worker.

Future work will focus on broadening the interaction scenarios and incor-
porate cooperative tasks with joint assembly. For this purpose human surveil-
lance and modeling will become a major focus in order to solve complex and
dynamic joint processes. Furthermore, the extensive use of sufficiently fast



motion planning is contemplated to reduce the “teaching by demonstration”
amount.

Videos are provided at www.robotic.dlr.de/Sami.Haddadin/isrr2009.
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