elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Kontakt | English
Schriftgröße: [-] Text [+]

A Systematic Study of Longwave Radiative Heating and Cooling within Valleys and Basins Using a Three-Dimensional Radiative Transfer Model

Hoch, S.W. und Whiteman, C.D. und Mayer, B. (2011) A Systematic Study of Longwave Radiative Heating and Cooling within Valleys and Basins Using a Three-Dimensional Radiative Transfer Model. Journal of Applied Meteorology and Climatology, 50, Seiten 2473-2489. DOI: 10.1175/JAMC-D-11-083.1.

[img]
Vorschau
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
2MB

Offizielle URL: http://journals.ametsoc.org/doi/pdf/10.1175/JAMC-D-11-083.1

Kurzfassung

The Monte Carlo code for the physically correct tracing of photons in cloudy atmospheres (MYSTIC) three-dimensional radiative transfer model was used in a parametric study to determine the strength of longwave radiative heating and cooling in atmospheres enclosed in idealized valleys and basins. The parameters investigated included valley or basin shape, width, and near-surface temperature contrasts. These parameters were varied for three different representative atmospheric temperature profiles for different times of day. As a result of counterradiation from surrounding terrain, nighttime longwave radiative cooling in topographic depressions was generally weaker than over flat terrain. In the center of basins or valleys with widths exceeding 2 km, cooling rates quickly approached those over flat terrain, whereas the cooling averaged over the entire depression volume was still greatly reduced. Valley or basin shape had less influence on cooling rates than did valley width. Strong temperature gradients near the surface associated with nighttime inversion and daytime superadiabatic layers over the slopes significantly increased longwave radiative cooling and heating rates. Local rates of longwave radiative heating ranged between 230 (i.e., cooling) and 90 K day21. The effects of the near-surface temperature gradients extended tens of meters into the overlying atmospheres. In small basins, the strong influence of nocturnal near-surface temperature inversions could lead to cooling rates exceeding those over flat plains. To investigate the relative role of longwave radiative cooling on total nighttime cooling in a basin, simulations were conducted for Arizona�s Meteor Crater using observed atmospheric profiles and realistic topography. Longwave radiative cooling accounted for nearly 30% of the total nighttime cooling observed in the Meteor Crater during a calm October night.

Dokumentart:Zeitschriftenbeitrag
Titel:A Systematic Study of Longwave Radiative Heating and Cooling within Valleys and Basins Using a Three-Dimensional Radiative Transfer Model
Autoren:
AutorenInstitution oder E-Mail-Adresse der Autoren
Hoch, S.W.Univ. of Utah, Salt Lake City, Utah, USA
Whiteman, C.D.Univ. of Utah, Salt Lake City, Utah, USA
Mayer, B.LMU / DLR
Datum:2011
Erschienen in:Journal of Applied Meteorology and Climatology
Referierte Publikation:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:50
DOI :10.1175/JAMC-D-11-083.1
Seitenbereich:Seiten 2473-2489
Status:veröffentlicht
Stichwörter:radiative transfer, MYSTIC
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben Atmosphären- und Klimaforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Physik der Atmosphäre > Fernerkundung der Atmosphäre
Hinterlegt von: Jana Freund
Hinterlegt am:02 Jan 2012 14:44
Letzte Änderung:12 Dez 2013 21:32

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Copyright © 2008-2013 Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.