elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Kontakt | English
Schriftgröße: [-] Text [+]

CFD Simulation and Performance Analysis of Alternative Designs for High-Temperature Solid Particle Receivers

Khalsa, Siri Sahib S. und Christian, Joshua M. und Kolb, Gregory J. und Röger, Marc und Amsbeck, Lars und Ho, Clifford K. und Siegel, Nathan P. und Moya, Adam C. (2011) CFD Simulation and Performance Analysis of Alternative Designs for High-Temperature Solid Particle Receivers. In: Proceedings of ASME 2011 5th International Conference on Energy Sustainability & 9th Fuel Cell Science, Engineering and Technology Conference, ESFuelCell2011. ASME. ASME 5th International Conference on Energy Sustainability & 9th Fuel Cell Science, Engineering and Technology Conference, ESFuelCell2011, August 7-10, 2011, Washington, DC, USA.

[img] PDF - Nur angemeldete Benutzer - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
615kB

Kurzfassung

Direct-absorption solid particle receivers are theoretically capable of yielding temperatures in excess of 1000°C, which enables higher efficiency power cycles and lower thermal storage costs. This paper presents rigorous CFD simulations of alternative solid particle receiver designs with recirculation to help identify optimal configurations that maximize the receiver thermal efficiency. The alternative receiver designs considered are a north-facing cavity receiver and a face-down surround-field cavity receiver. The CFD simulations model incident solar radiation from a heliostat field as a boundary condition on the model domain. The CFD simulations also couple convective flow with the thermal and discrete-phase (particle) solutions, which in turn affects absorption of incident solar radiation and thermal re-radiation within the receiver. The receivers are optimized to yield comparable particle temperatures at the outlets of 750-850°C, heated from an injection temperature of 300°C, and are compared on the basis of thermal efficiency. The CFD simulations yielded thermal efficiencies of the north-facing receiver at 72.3% (losses were 6.5% radiative and 20.9% convective) and the face-down receiver at 78.9% (losses were 11.4% radiative and 9.6% convective) at solar noon on March 22. Ongoing efforts are focused on reducing convective and radiative losses from both receiver configurations.

Dokumentart:Konferenzbeitrag (Vortrag, Paper)
Titel:CFD Simulation and Performance Analysis of Alternative Designs for High-Temperature Solid Particle Receivers
Autoren:
AutorenInstitution oder E-Mail-Adresse der Autoren
Khalsa, Siri Sahib S.SNL
Christian, Joshua M.SNL
Kolb, Gregory J.SNL
Röger, MarcDLR
Amsbeck, LarsDLR
Ho, Clifford K.SNL
Siegel, Nathan P.SNL
Moya, Adam C.SNL
Datum:August 2011
Erschienen in:Proceedings of ASME 2011 5th International Conference on Energy Sustainability & 9th Fuel Cell Science, Engineering and Technology Conference, ESFuelCell2011
Referierte Publikation:Nein
In ISI Web of Science:Nein
Verlag:ASME
Status:veröffentlicht
Stichwörter:central receiver system, solid particle receiver, high temperature receiver, receiver design
Veranstaltungstitel:ASME 5th International Conference on Energy Sustainability & 9th Fuel Cell Science, Engineering and Technology Conference, ESFuelCell2011
Veranstaltungsort:Washington, DC, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:August 7-10, 2011
Veranstalter :ASME
HGF - Forschungsbereich:Energie
HGF - Programm:Erneuerbare Energie
HGF - Programmthema:E SF - Solarforschung (alt)
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SF - Solarforschung
DLR - Teilgebiet (Projekt, Vorhaben):E - Solare Hochtemperatursysteme (alt)
Standort: Stuttgart
Institute & Einrichtungen:Institut für Solarforschung
Hinterlegt von: Marc Röger
Hinterlegt am:15 Dez 2011 14:14
Letzte Änderung:12 Dez 2013 21:29

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Copyright © 2008-2013 Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.