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a b s t r a c t

The primary objective of the TanDEM-X mission is the generation of a global high resolution digital ele-
vation model (DEM) with single-pass SAR interferometry. Within the mission, the Earth’s land masses
will be mapped at least twice to achieve relative vertical accuracies in the order of two meters. This paper
presents an analysis of the mission performance in terms of the relative height error showing first results
obtained from TanDEM-X interferometric data. For critical areas characterized by strong volume decor-
relation phenomena or mountainous terrain, different approaches to improve the final height error are
investigated as well.
� 2012 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

B.V. All rights reserved.
1. Introduction

TerraSAR-X (launched in June 2007) and TanDEM-X (launched
in June 2010) are two German SAR satellites, developed within a
public/private partnership between the German Aerospace Center
(DLR) and EADS Astrium. Both satellites serve for two different
SAR missions: the TerraSAR-X mission (Werninghaus and Buckre-
uss, 2010), where both satellites provide high-quality SAR products
for the science community and commercial purposes, and the Tan-
DEM-X mission (Krieger et al., 2007) (started in June 2010) which
has the primary goal of generating a global, high precision digital
elevation model (DEM). Since October 2010, both satellites have
been flying in close orbit configuration, enabling the acquisition
of highly accurate cross- and along-track interferograms, which
will be used as starting point for the generation of DEMs using sin-
gle-pass SAR interferometry techniques (Krieger et al., 2007; Fritz
et al., 2011). Digital elevation models are required for many pur-
poses, such as navigation, cartography and the orthorectification
of other remote sensing image products. Up to now, DEMs have
been derived using several SAR sensors, both airborne and space-
borne. Available global DEMs are the GTOPO30 (USGS GTOPO,
2001), provided by the United States Geological Survey (USGS)
and characterized by a horizontal grid spacing of 3000 (approxi-
mately 1 km), and the one provided by the Shuttle Radar Topogra-
phy Mission (SRTM) (Werner, 2001), whose coverage is limited to a
latitude range between 56�S and 60�N and which is delivered with
a grid spacing of 100 for regions within the US territory and less than
300 for the rest of the mapped areas. An overview of the SRTM mis-
sion performance can be found in (Rodrı́guez et al., 2006), where
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different sources of errors, such as baseline determination, thermal
noise, timing and position errors and beam overlapping mis-
matches are taken into account. Three different types of errors
characterize the final DEM: an absolute height error, which can
be properly calibrated using ground reference targets, a random
error, which is caused by thermal noise and residual geometric
decorrelation effects, and geolocation errors due to instrument
time and phase offsets, which can be properly calibrated by using
ground control points like corner reflectors. These three error
sources are taken into account to define the TanDEM-X DEM prod-
uct specification, as presented in (Wessel, 2011), leading to the def-
inition of the following three quantities: absolute vertical accuracy,
relative vertical accuracy and absolute horizontal accuracy. The
specified values are presented in Table 1. In this paper, only the rel-
ative vertical accuracy will be addressed.

The TanDEM-X system was commissioned during a period of
about 5 months after the launch (Hueso Gonzalez et al., 2010).
The single TanDEM-X satellite was first calibrated to fulfill the Ter-
raSAR-X mission requirements, acquiring data in monostatic con-
figuration (Kraus et al., 2011; Schwerdt et al., 2011). The bistatic
performance was then analyzed in detail, taking into account dif-
ferent acquisition geometries, modes and radar parameters (Mar-
tone et al., 2011). The mission operational phase started in
December 2010, with the aim of providing a complete high-resolu-
tion DEM of the Earth land masses in 2014. The nominal operation
mode for the systematic data acquisition is the bistatic Stripmap
mode, where both satellites offer the flexibility to work as the
master transmitting sensor in order to equally share the power re-
sources. To provide a good interferometric basis for multi-baseline
phase unwrapping, a first complete coverage of the land masses
has been achieved after the first year of operation, acquiring inter-
ferograms with a target height of ambiguity (HoA) higher than
emote Sensing, Inc. (ISPRS) Published by Elsevier B.V. All rights reserved.
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Table 1
TanDEM-X DEM specifications.

Requirement Specification Accuracy

Relative vertical accuracy 90% linear point-to point
error over a 1� � 1� cell

2 m (slope < 20%)

4 m (slope > 20%)
Absolute vertical accuracy 90% linear error 10 m
Absolute horizontal accuracy 90% circular error 10 m
Spatial resolution independent pixels 12 m

(0.400 at equator)
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45 m. The HoA is defined as the height difference equivalent to a 2p
phase cycle inside an interferogram and can be expressed, for the
bistatic case, as:

HoA ¼ kr sin hi

B?
; ð1Þ

where k is the radar wavelength, r the slant range, hi the incidence
angle and B\ the baseline perpendicular to the line of sight.

To meet the specifications on the final vertical accuracy in chal-
lenging areas, such as mountains and tall forests, additional data
have to be acquired as needed. The final DEM is then generated
by mosaicking all data acquisitions (Hueso Gonzalez et al., 2010).

This paper focuses on the analysis of the system performance in
terms of the relative height error, showing first results derived
from the acquired TanDEM-X elevation data. It is structured as fol-
lows: Section 2 presents the theoretical approach used for the esti-
mation of the point-to-point relative height error. Section 3 shows
several examples of the actual performance obtained over test sites
characterized by different HoAs and land cover types and presents
a comparison with the theoretical performance. Finally, Section 4
describes different approaches for monitoring the mission perfor-
mance and improving the relative height error over critical areas.

2. Relative height error estimation approach

Given two SAR images acquired from displaced locations, it is
possible to reconstruct the DEM of the ground starting from the
phase interferogram between the two. Here, the relative height er-
ror is intended to describe white noise-like contributions inside the
DEM, which cannot be removed by the final calibration and mosai-
king process. The estimation of the relative height error is based on
the quantification of the interferometric phase errors. The phase
difference u between two interferometric SAR channels can be de-
scribed as a random variable, characterized by its probability den-
sity function (pdf) pu(u) (Lee et al., 1994). It is related to the total
interferometric coherence ctot, which quantifies the error contribu-
tions coming from different sources, such as limited signal-to-
noise ratio (SNR), volume and temporal decorrelation effects as
well as range and azimuth ambiguities, as described in (Krieger
et al., 2007). The estimation of the 90% point-to-point phase error
Du90% requires the computation of the 90% percentile from the pdf
obtained by evaluating the difference between two random vari-
ables, each of them describing the fluctuation of the interferomet-
ric phase within one interferogram (Krieger et al., 2007). For a
considered HoA, the point-to-point 90% relative height error is then
derived from the interferometric phase error as:

Dh90% ¼ HoA � Du90%

2p
: ð2Þ

In the following, we describe an approach that has been imple-
mented to directly estimate the point-to-point relative height error
from real SAR data, taking into account two successively acquired
DEMs D1(r1) and D2(r2). The two DEMs are acquired with the same
acquisition parameters and over mutually overlapping regions of
interest r1 and r2 in [lat/lon] coordinates. Moreover, both DEMs
are supposed to be affected by independent noise components. A
common region of interest r has to be defined as r = r1 \ r2, so that
both DEMs can be referred to the same ground coordinates, leading
to D1(r) and D2(r). The reference frame can now be transformed
from [lat/lon] coordinates to horizontal and vertical distances by
evaluating the single coordinate distances on the WGS84 ellipsoid.
A further interpolation is required in order to obtain a uniform grid
of space coordinates [x,y], whose orthogonal spacings are defined as
Dx and Dy.

Starting from D1(x,y) and D2(x,y), the DEM difference can now
be evaluated:

DDðx; yÞ ¼ D1ðx; yÞ � D2ðx; yÞ: ð3Þ

Systematic contributions due to an unprecise estimation of acquisi-
tion parameters, such as sensor orbit position and baseline, produce
slowly varying errors within a SAR DEM and will be compensated
during the final DEM calibration process. Heance, a high-pass filter-
ing is required to remove such slowly varying components and
quantify the relative height error from the DEM difference. The fil-
tering process can be performed in the frequency domain as ex-
plained in the following. The two-dimensional Fourier transform
of the DEM difference DD(x,y) is evaluated as:

Sðkx; kyÞ ¼
Z y0

0

Z x0

0
DDðx; yÞe�jkxxe�jkyy dxdy; ð4Þ

where kx and ky are the spatial frequency domain variables. The
maximum spatial coordinates x0 and y0 are defined as x0 = NxDx,
y0 = NyDy, Nx and Ny being the number of samples in the horizontal
and vertical dimensions. A two-dimensional circular high-pass filter
Fhigh(kx,ky) is designed in the frequency domain as:

Fhighðkx; kyÞ ¼ 1� Flowðkx; kyÞ; ð5Þ

Flow(kx,ky) being a two-dimensional low-pass gaussian filter, de-
fined as:

Flowðkx; kyÞ ¼ e

� k2
xþk2

yð Þ
2 r2

xþr
2
yð Þ; ð6Þ

where r2
x ; r2

y describe the bandwidth in the horizontal and vertical
dimensions. The filter bandwidth has been experimentally chosen
by finding a compromise between an eventual error underestima-
tion and the undesired permanency of low-frequency components
in the filtered data, leading to a cut-off frequency of about 1/10 of
the whole bandwidth. The high-pass filtering operation is then per-
formed by

Shighðkx; kyÞ ¼ Sðkx; kyÞFhighðkx; kyÞ ð7Þ

and the estimated relative height error is retrieved as:

Dhðx; yÞ ¼ 1
4p2

Z kx0
2

�
kx0

2

Z ky0
2

�
ky0

2

Shighðkx; kyÞejxkx ejyky dkx dky; ð8Þ

where kx0 and ky0 are defined as:

kx0 ¼
2p
Dx

; ky0
¼ 2p

Dy
: ð9Þ

The DEM specifications have to be verified for flat and mountainous
terrain separately, as presented in Table 1. In order to discriminate
flat from mountainous areas, a slope mask can be generated by
evaluating the local DEM gradient: starting from a smoothed ver-
sion of one of the two input DEMs D1(x,y) or D2(x,y), the horizontal
and vertical DEM gradient components are evaluated as:

rD1ðx; yÞ ¼
@D1ðx; yÞ

@x
;
@D1ðx; yÞ

@y

� �
: ð10Þ



Fig. 1. Evaluation approach of the Dh90% from successively acquired DEMs, comprising the relative height error evaluation by high-pass filtering of the DEM difference and
the slope mask generation by evaluating the two-dimensional gradient of the first input DEM. Relative height error histograms are displayed for flat (slopes lower than 20%)
and mountainous terrain (slopes higher than 20%). Here, soil and rocks acquisitions over Death Valley (USA) are displayed.
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Then, the predominant local slope is retrieved by computing the
Euclidean norm of the gradient vector:
Gðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@D1ðx; yÞ

@x

� �2

þ @D1ðx; yÞ
@y

� �2
s

: ð11Þ
Height errors over flat and mountainous areas are discriminated
by setting a threshold Tslope on the local slope. The [xf,yf] and
[xm,ym] coordinates over flat (index f) and mountainous (index
m) areas are separately evaluated by imposing a threshold Tslope

on jG(xf,yf)j.
Since both positive and negative contributions have to be taken

into account, the 90% height error Dh90% can be finally estimated by
evaluating the 90% percentile from the histograms of jDh(xf,yf)j and
jDh(xm,ym)j. Fig. 1 shows the complete height error estimation
chain, starting from two successively acquired DEMs.
Fig. 2. Left: Dh90% range profiles over incidence angles for six different acquisitions o
performance, taken from (Krieger et al., 2007). Curves are computed for HoAs of 45 m (d
combination of multiple swaths, as explained in Section 4.2.
3. Point-to-point relative height error verification

3.1. Analysis of the incidence angle dependence of the relative height
error

For any two successively acquired DEMs, the height error
behavior along the range dimension can be analyzed by dividing
the relative height error matrix into blocks of about 600 m in the
range dimension and averaging over the whole azimuth scene
length. For each of them the Dh90% is evaluated. Fig. 2 shows on
the left-hand side the Dh90% range profiles as a function of the inci-
dence angles for six different acquisitions over soil and rocks
terrain, according to the GLOBCOVER classification map (GLOB-
COVER, 2009). Only flat terrain has been taken into account (the
corresponding HoA is displayed as well). Due to the lower antenna
gain, Dh90% increases at the swath edges, while the best perfor-
mance is achieved at mid range, where a higher antenna pattern
ver soil and rocks terrain. Flat terrain only is taken into account. Right: theoretic
otted) and 30 m (dashed). The solid curve shows the final error, resulting from the



Fig. 3. Summary of the estimated Dh90% from TanDEM-X repeated acquisitions over
soil and rocks terrain for different HoAs. A linear trend is fitted over Dh90%

measurements for flat areas. Green boxes highlight the predicted performance from
(Krieger et al., 2007) according to Fig. 2.
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gain allows for better SNR. Note that, in the case of the Death Valley
test site (green), characterized by a HoA of 30.7 m, the Dh90% range
profile is noisier with respect to the other ones because of the lim-
ited number of available samples over flat areas. This site is mostly
mountainous, especially at mid range, while all the other test sites
are almost completely flat. On the right-hand side of Fig. 2 the the-
oretically predicted performance, taken from (Krieger et al., 2007),
is displayed. The comparison between the two graphs shows that,
for ground areas characterized by stable backscatter, the elevation
data measurements are better than the predicted performance.
Fig. 4. Dh90% for different land cover classes
This result is mainly due to the very stable conditions of the chosen
test sites and to the conservative assumption about the backscat-
tering levels which has been taken into account in the predicted
performance.

3.2. Relative height error for different HoAs

The theoretical dependency of the relative height error on the
HoA has been presented in Eq. (2). Fig. 3 shows a summary of the
estimated Dh90% from TanDEM-X repeated acquisitions over soil
and rocks terrain for different HoAs. Since many of the considered
acquisitions are characterized by almost completely flat terrain,
the Dh90% over mountainous areas is available for a few test sites
only. A linear trend is fitted over the Dh90% measurements for flat
areas, leading to an estimate of Dh90% equal to 1.7 m for an HoA
of 30 m and Dh90% equal to 2.5 m for an HoA of 45 m. The two HoAs
taken into account are the ones for which the theoretical point-to-
point Dh90% profiles in Fig. 2 (right) are evaluated. These results
match very well with the theoretical performance where, if swath
overlapping areas are not taken into account, the Dh90% resides
within 1.2 m and 2 m for an HoA of 30 m, and within 1.8 m and
3 m for an HoA of 45 m.

3.3. Relative height error for different land cover classes

The estimated relative height error depends not only on the sys-
tem acquisition parameters, but also on the ground target charac-
teristics. Illuminated areas can be grouped into different land cover
: ice, agricultural areas and rain forest.



Fig. 5. Example of the improvement of the relative height error by combining multiple DEM acquisitions. Inputs are the point-to-point relative height error histograms
evaluated from successively acquired DEMs over the same ground area (Death Valley – USA). rHE

1 and rHE
2 are the relative height error standard deviations obtained from the

input histograms, while Dh1
90% and Dh2

90% are the corresponding 90% relative height errors. rHE
comb and Dhcomb

90% are the relative height error standard deviation and 90% confidence
level after the convolution.
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classes and separately analyzed, allowing for the development of
different acquisition strategies for each of them, e.g. by setting dif-
ferent minimum HoAs as presented in Section 4.1. Fig. 4 shows an
example of some of the considered test sites, characterized by the
following land cover classes: ice (a), agricultural areas (b) and rain
forest (c). Note that the same system parameters (i.e. baseline and
HoA) are not available over different areas. For this reason, data ac-
quired with different HoAs are used for performing the relative
height error analysis for different land cover classes. It becomes
clear that, for all cases, further acquisitions will be required in or-
der to meet the final DEM specification. This will be presented in
Section 4.2. Different aspects, such as volume and temporal decor-
relation, have an additional impact on the estimation technique, so
that results may not match with the theoretical performance. A
particularly significant example is given by the estimated Dh90%

over the rain forest (Fig. 4c), where volume decorrelation strongly
affects the final performance.

4. Height error improvement approaches

The final TanDEM-X mission performance in terms of the rela-
tive height error will have to satisfy the specifications described
in Table 1. For critical areas, characterized by strong volume decor-
relation or mountainous terrain, the acquisition strategy has to be
specially optimized. For this reason, different approaches to im-
prove the final height error performance have been investigated:
depending on the acquisition parameters and on the target charac-
teristics of the illuminated ground area, the achieved performance
can be improved by changing the acquisition geometry or by
increasing the number of acquisitions, which are used to generate
the final DEM (multi-baseline multi-image interferometry). In the
following sections, different solutions are proposed.

4.1. HoA impact on height error over highly vegetated areas

Highly vegetated areas, such as rain forest, are affected by
strong volume decorrelation phenomena. In such cases, an increase
of the HoA allows for a reduction of the volume decorrelation im-
pact on the interferometric coherence, leading to a reduction of
the relative phase error. For this reason, a minimum required
HoA of about 45 m has been established for acquisitions over veg-
etated areas, in order to assure a sufficient quality for the phase
unwrapping (Martone et al., this issue). From Eq. (2), it can be no-
ticed that the HoA cannot be arbitrarily incremented, because of
the mission specifications on the final vertical DEM accuracy. For
this reason, the approach explained in Section 4.2 will be taken
into account as well.

4.2. Height error improvement with multiple acquisitions

A further improvement of the relative height error accuracy can
be achieved by combining multiple interferometric acquisitions



Fig. 6. Relative height error improvement at swath edges by combining overlapping regions. (a) and (b): point-to-point relative height error standard deviation for two
separate overlapping acquisitions over the Australia test site, characterized by soil and rocks. (c): Final relative point-to-point height error standard deviation after the
combination of the initial scenes with Eq. 12. (d) For each pixel, a Gaussian pdf with a standard deviation equal to the point-to-point relative height error standard deviation is
generated. (e) Pdf obtained from the sum of pdfs in (d) and estimation of the Dh90%.

P. Rizzoli et al. / ISPRS Journal of Photogrammetry and Remote Sensing 73 (2012) 30–38 35
over the same ground area, recurring to multi-baseline phase
unwrapping techniques, as described in (Lachaise et al., 2007).
From Fig. 5 it can be inferred that the relative height error is rea-
sonably well characterized by a Gaussian distribution (the Gauss-
ian pdf, evaluated using the mean value and standard deviation
retrieved from the histogram itself, is plotted as well). Knowing
that the linear combination of two random variables with indepen-
dent Gaussian distributions is still a random variable with Gauss-
ian distribution, the final relative height error standard deviation
Dhtot, obtained by the optimum combination of multiple acquisi-
tions, can be evaluated as (Krieger et al., 2007):

Dhtot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1PN
i¼1

1
Dh2

i

vuut ð12Þ

where N represents the total number of available acquisitions. Gi-
ven the properties of a Gaussian distribution with zero mean, where
the standard deviation and the 90% confidence level are related to
each other by a fixed ratio, Eq. (12) can be applied to the 90% rela-
tive height error as well. This approach has been validated by com-
paring the obtained results with the ones generated by convolving a
stretched version of the input histograms and evaluating the Dh90%
of the obtained histogram. A stretching factor ai, evaluated as in
(Krieger et al., 2007), has been applied to the ith input histogram.
The example proposed in Fig. 5 presents the results obtained from
such a test, taking into account two subsequent repeat-pass acqui-
sitions over the same region of interest, situated over the Death Val-
ley (USA), and characterized respectively by a HoA of about 39 m
and 42 m. Both acquisitions are characterized by Soil and Rocks
ground classification and present a mean interferometric coherence
higher than 0.8. Using the estimation approach presented in section
2, the Dh90% over flat areas can be retrieved for each acquisition sep-
arately: Dh1

90% (sub-figure a) refers to the first acquisition, while
Dh2

90% (sub-figure b) to the second one. A combined 90% height error
Dhcomb

90% of about 1.01 m is obtained after the convolution of the
stretched histograms (sub-figure (c)), while the combination of
the estimated Dh1

90% and Dh2
90% using Eq. (12) leads to a final 90%

height error Dhtot of 1.02 m. The obtained results are in good agree-
ment with each other.

As can be inferred from Fig. 2, the worst performance is
achieved at the swath edges. In order to assure the complete cov-
erage of land masses, adjacent acquisitions are always character-
ized by an overlapped region, both at near and far range. In this
specific area, two or more overlapping swaths are already available
within the first global coverage, allowing for the improvement of



Fig. 7. Estimation of relative height error improvement with multiple acquisitions, starting from the interferometric coherence of Death Valley test site. (a) and (b): 90%
height error from interferometric coherence, (c): estimated 90% height error after combining the previous acquisitions in (a) and (b). (d): histogram of combined 90% height
error per pixel.
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the relative height error as explained above. In this way, in the case
of highly coherent and stable areas (such as flat areas characterized
by soil and rocks terrain) the combination of acquisitions from the
first year of the TanDEM-X mission can be sufficient to achieve the
required mission specification. An example is shown in Fig. 6. Two
overlapping DEMs over Australia are taken into account: the single
point relative height error standard deviation is firstly evaluated
from the interferometric coherence, as presented in (Krieger
et al., 2007). Assuming a zero mean normal distribution, as justi-
fied from the example in Fig. 5, the point-to-point relative height
error standard deviation is then derived by multiplication with
the square root of two. Fig. 6a and b present, for each input acqui-
sition, the point-to-point relative height error standard deviation
rHE estimated from the interferometric coherence. Fig. 6c shows
the final point-to-point relative height error standard deviation
rHE

comb obtained from the combination of the two initial scenes using
Eq. (12). Images are color coded using different levels, each of them
characterizing relative height errors comprised into definite
ranges, as described by the colorbar. A consistent improvement
of the performance is visible over the overlapped region, which in-
volves the swath edges of both single acquisitions. The final point-
to-point Dh90% is then directly estimated from rHE

comb in the follow-
ing way: each pixel is supposed to be normally distributed with
standard deviation rHE

i and zero mean. The corresponding Gauss-
ian pdf is evaluated for each available pixel (Fig. 6d) and the nor-
malized sum of all the pdfs is evaluated. The Dh90% is finally
retrieved from the resulting pdf, as presented in Fig. 6e.
4.3. Multiple acquisition global prediction approach

The approach proposed in Section 4.2 shows a significant
improvement of the relative height error performance using multi-
ple acquisitions. In order to support the acquisition planning strat-
egy for additional acquisitions, a global scale approach is
introduced. It consists in combining multiple acquisitions using
Eq. (12) and then deriving the 90% point-to-point relative height
error as presented in Section 4.2. This approach relies on available
single-pass bistatic acquisitions only, instead of evaluating two or
more DEM acquisitions which are available for dedicated test sites
only. Fig. 7 presents in (a) and (b) the point-to-point relative height
error standard deviation images, evaluated from each coherence
matrix associated with two acquisitions over the Death Valley
(USA), while Fig. 7c shows the combined point-to-point relative
height error standard deviation. Sub-figure (d) on the right hand
side shows the histogram of the combined height error standard
deviation, evaluated as presented in section 4.2 and characterized
by a Dh90% of 1.10 m.

Note that areas characterized by a point-to-point relative height
error higher than 2 m still remain. Such areas are mainly character-
ized by ground slopes higher than 20%. The interferometric Tan-
DEM-X performance parameters acquired up to now provide a
solid basis for estimating the impact and necessity of multiple
acquisitions on a global scale, depending on the on-ground topog-
raphy, land coverage classification and acquisition parameters. An
example is presented in Fig. 8: sub-figures (a) and (b) show respec-



Fig. 8. Relative height error quantification approach for global monitoring purposes. (a): DEM from 12 overlapping acquisitions over Australia. (b) point-to-point relative
height error standard deviation. (c) point-to-point relative height error standard deviation ground range profiles of each single acquisition. (d) point-to-point relative height
error standard deviation ground range profile of the composed acquisitions using Eq. (12).
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tively the DEM and the point-to-point relative height error stan-
dard deviation rHE obtained by mosaicking 12 different TanDEM-
X acquisitions over Australia, covering an area of about
250 � 100 km2.

rHE is obtained from the interferometric coherence, and Eq. (12)
is applied in order to properly compose overlapping regions. Sub-
figure (c) presents, for each acquisition separately, the point-to-
point relative height error standard deviation ground range pro-
files, evaluated by averaging the rHE along the azimuth dimension.
Note that the acquisition centered around a ground range of 50 km
is characterized by higher height error, due to an higher HoA. Final-
ly, sub-figure (d) shows the ground range rHE profile after the com-
bination of all the available acquisitions. It can be noticed that the
rHE is improved both at swath edges and where two acquisitions
are available over the same ground area. The same approach can
be repeated for different test sites, leading to a global overview
of the system performance.
5. Conclusions

In this paper, the TanDEM-X system performance has been ana-
lyzed in terms of the relative height error. The estimation approach
and the first results obtained from TanDEM-X successively acquired
DEMs are presented. The relative height error depends on several
factors, such as the ground characteristics and the acquisition
geometry. Different tests have been analyzed, as presented in
Sections 3.1, 3.2 and 3.3, showing the overall good performance
of the TanDEM-X elevation data with a single acquisition already.
Different approaches for improving the final DEM performance
have been analyzed in Section 4, taking into account the conse-
quences of changing the acquisition geometry or the possibility of
combining multiple images over the same ground area. This will
be important for difficult terrain or areas suffering from strong
decorrelation effects. An approach for estimating the benefit of
multiple acquisitions on a global scale has been presented, based
on the interferometric coherence information. The derived relative
height error is in good agreement with the estimation approach
presented in Section 2 and allows for a further optimization of fu-
ture acquisitions for completing the final TanDEM-X DEM.
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