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—~ Introduction and goals

~ Multi-scale approach

* A multi-scale thermal
model for a LiFePO,
lithium-ion cell is

* Battery performance and lifetime are
influenced by temperature
* Risk of fire and explosion at high T

19X developed it i
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* Thermal modeling is an effective tool single cell:

for predicting cell thermal behavior

» A complete thermal model consists of
a heat generation model and a heat
transport model

* Goal: Study the temperature and heat
flow patterns of a LiFePO,-based cell
under variable loads

~ 20 mm scale

« Li* charge transport
in electrolyte:
~ 100 pm scale
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* Li transport in solid
phase:
~100-1000 nm scale
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~ Model equations
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Heat transfer model
« 3D finite element model using ANSYS

Heat transfer inside the cell
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Heat transfer out of the Cell
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Assumptions:

« Jellyroll modeled as a single material with
distinct thermal properties

« Variations in 0 direction ignored

« Effects of current collector perturbations
ignored

Parameters: Thermal conductivity and heat
capacity were determined experimentally

Multi-scale simulation N
- Vertical (indirect) and horizontal (direct) coupling used for interaction

Vertical coupling Horizontal coupling
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« In horizontal coupling linear
interpolation is used between the
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— Simulation results N
Vertical (indirect) multi-scale coupling Horizontal (direct) multi-scale coupling
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* Heat generation obtained from « Minimum and maximum 707.8 Wim? 709.6 W/m? Time / sec
electrochemical simulation used as  temperature profiles obtained « Linearly interpolated contours of  + An example simulation result
input load for heat transfer model from heat transfer simulations heat generation from electroche- showing surface temperature
« Temperature distribution inside and outside the cell mistry model used as input heat versus time at 5C-rate using
source for heat transfer model two different boundary
he=5 W/(m2K) he= 1 WImPK) conditions with T,,, =298 K
Ten= 298 K T, = 208K
* An example simulation
result showing temperature
distribution over half cell
geometry at 2C-rate
T | — —
\_ 311.2K 304.32 K 304.43 K Yy,
~ Conclusions Future work N
» Model found to be useful in predicting thermal behavior of the cell * Improve parameterization of model
under variable loads + Validation of the model with experimental findings
- Small gradient of temperature was observed in axial direction as * Expand the model to be used with variable boundary conditions
compared to the radial direction » Expand the model to module level
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