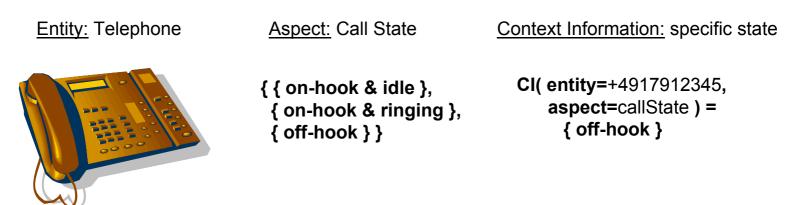

Contextual Service Interoperability

Thomas Strang <thomas.strang@dlr.de> DLR Oberpfaffenhofen

Interoperability Levels

- What is Context
 - Definitions
 - Examples
- Why own level?
- Contextual Interoperability
 - Model View
 - Interface identification
- Context Ontology Language
 - Open Issues + Discussion



What is Context (1/2) ?

Definition of Context Information

- "A context information is any information which can be used to characterize the state of an entity concerning a specific aspect"
- "An entity is a person a place or in general an object"
- "An aspect is a classification, symbol or value-range, whose subsets are a superset of all reachable states"

Example:

What is Context (2/2) ?

Definition of Context

- "A context is the set of all context information characterizing the entities relevant for a specific task in their relevant aspects"
- "An entity is relevant for a specific task, if its state is characterized at least concerning one relevant aspect"
- "An aspect is relevant, if the state with respect to this aspect is accessed during a specific task or the state has any kind of influence on the task"

Example:

<u>Task:</u> traveller reaching plane using public transport

Relevant Entities

- traveller
- carrier (taxi, train, bus...)
- infrastructure (roads...)
- plane to reach

Context: all CI of relevant aspects

- \rightarrow willingness to spend money
- \rightarrow duration/delay, cost
- \rightarrow delay
- \rightarrow time of departure + buffer

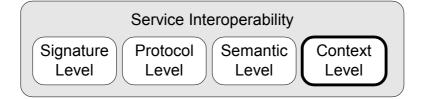
Context Awareness

Definition of Context Awareness:

A system is context aware if it uses any kind of context information before or during service provisioning or service usage"

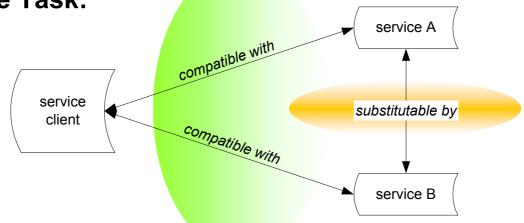
Location Awareness is special issue of Context Awareness (but by far not the only one!)

Two main benefits from Context Awareness:


- Adaptation of services to changes in environment reduces amount of interaction with user
- Improvement of UI (particularly on small mobile devices)

Context: Why own interoperability level?

eases separation of services which are interoperable on classic levels, but not on context level (and vice versa)

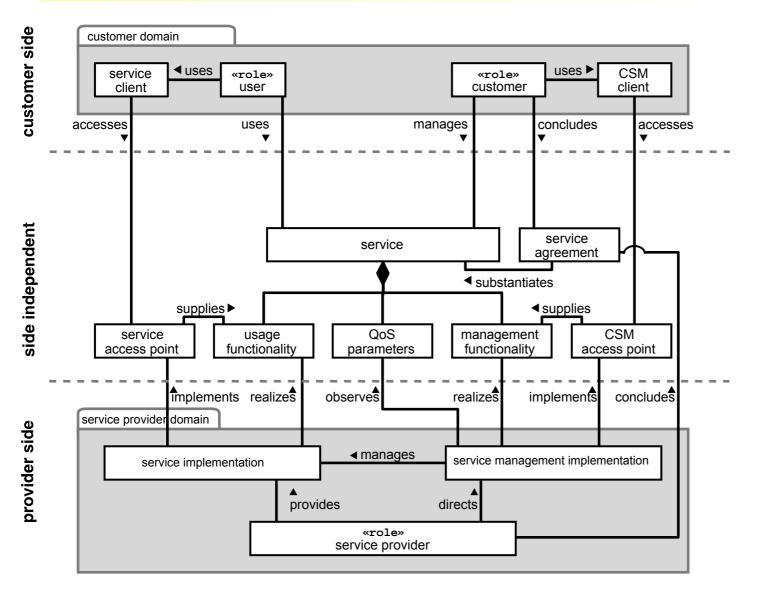

- Example: electronic public transport timetable service
- context is **not covered very well** in classic levels
- enables thematic concentration for correctness and integrity

Interoperability in Middleware

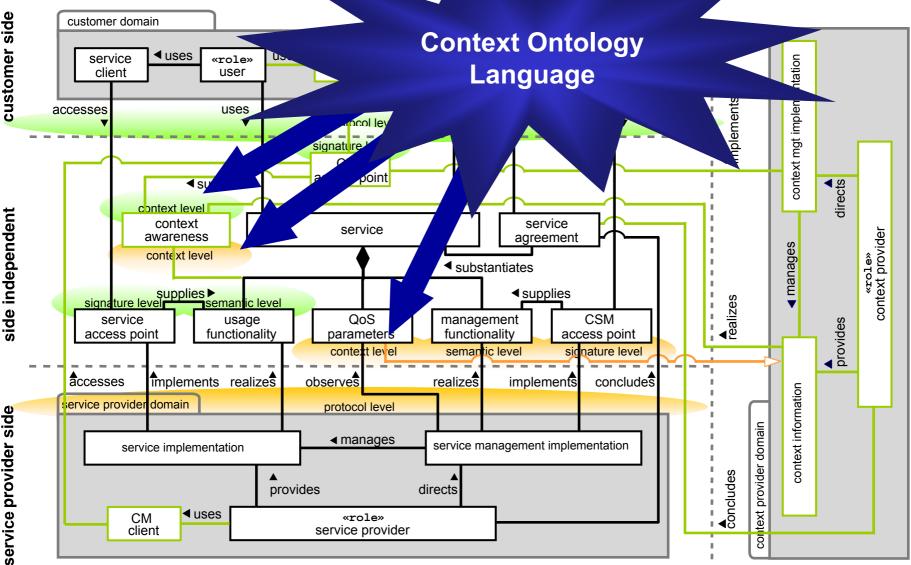
Middleware Task:

Interoperability Evaluation during Service Discovery

- service search (feed)
- service selection (feed back)


Interoperability Evaluation during Service Execution

- lifecycle monitoring and management
- notification about and adaptation to context changes
- inter-provider handover


MNM Service Model: Service View

Case-Driven Methodology for Applying the MNM Service Garschhammer, M., Hauck, R., Hegering, H.-G., Kempter, B., Radisic, I., *Model*, In Stadler, R., Ulema, M., editors, Proceedings of the 8th International IFIP/IEEE Network Operations and Management Symposium (NOMS 2002), pp. 697-710, IEEE Publishing, IFIP/IEEE, Florence, Italy, April, 2002. ∢ Rölle, H., Schmidt, H., Model, In Stadler, R., Source:

Interoperability in Externed M S-Model

Design of Context Ontology Language (CoOL)

- **XML & XML** schema based
 - probably based also on RDF
- used to model
 - aspects defining valid context information
 - relevance conditions
 - actors and dependencies
- enables dynamic (at runtime) multi-party service interoperability checks at new context level
- **CoOL** is employed during service discovery **and** execution to negotiate and monitor context to enable context awareness of middleware and services
- Middleware uses CoOL statements to link distributed objectassociated context information with context un-aware objects and services

Open issues: Current Investigations on CoOL

Pure XML schema vs. RDF / RDF Schema

- complexity of RDF/RDFS vs. resource limited devices
- some drawbacks of RDF have already been identified e.g. in [Haustein2001] [Furche2001] [Indulska2003]
- but significant body of work has been done with RDF

"Plugin Model" to DAML-S vs. Standalone Model

DAML-S / DAML+OIL adds additional complexity

WebOnt (OWL) vs. minimum language

OWL in very early state

Summary

New *context level* of service interoperability

- advantages particularly in Ubiquitous Computing Environments
- Clear definitions what context is and what not
 - Introduction of the aspect
 - affiliated context awareness
 - Examples

Context extension of the MNM service model

- Identification of interoperability requirements
- **Outline** of Context Ontology Language (CoOL)
 - still some major open issues

Thank You!

Any Questions?

Dipl.-Inform. Thomas Strang mailto:thomas.strang@dlr.de http://www.dlr.de/kn/kn-s/strang

German Aerospace Center (DLR) Site Oberpfaffenhofen Institute of Communications and Navigation (KN-S) PO Box 1116 82230 Wessling-Oberpfaffenhofen Tel: +49-8153-28-1354 Fax: +49-8153-28-1871

