

Knowledge for Tomorrow

Extreme sandwich-lightweight design with high degree of functional integration

Michael Kriescher Simon Brückmann

Institute of Vehicle Concepts

May 10th, 2012

Vehicles of the German Aerospace Center

Lunar rover

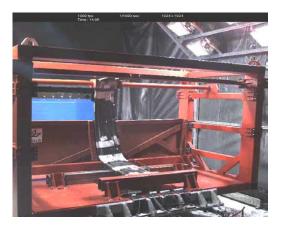
Aircraft for flight testing

DLR Institute of Vehicle Concepts Lightweight & Hybrid Design Methods

 Development of resource-efficient, innovative vehicle concepts

- Safe, light and cost-effective

 Adaptation to alternative drive train concepts

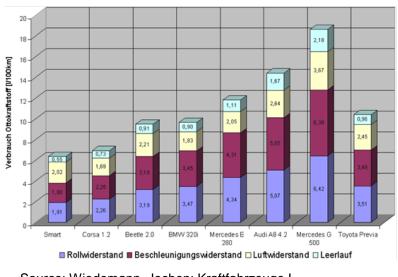


Lightweight & Hybrid Design Methods Passive safety / crash simulation and testing

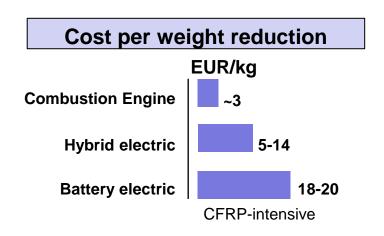
Motivation for lightweight design Politics, Society / Environment und legislation

- Shortage of resources
- Climate change
- Population and mobility growth

- Decrease of consumption and emissions necessary
- Increasing demand for more efficient mobility



Source: Internet, Naisbitt

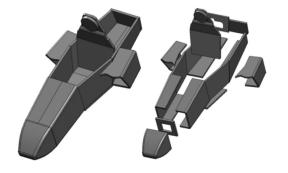


Importance of low vehicle mass

Source: based on McKinsey Study "Lightweight materials and design - a perspective across key industries", 2012

- 2/3 of the total fuel consumption are weight-dependent
- Secondary mass reduction of the drive train and energy storage is especially important with electric vehicles

State of the art body in white construction



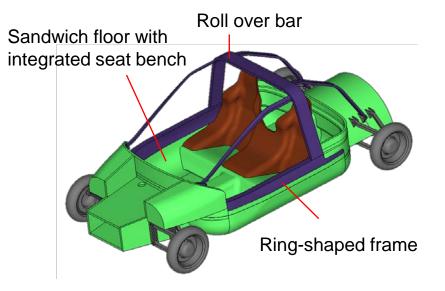
- Very low cost in large scale production
- Mass: around 180-250 kg for a 4 -seater
- Hollow structures, joined with spot-welds,
- Relatively complex geometry, around 200-300 parts
- High stiffness but tendency for buckling under certain load conditions

Use of sandwich parts - examples

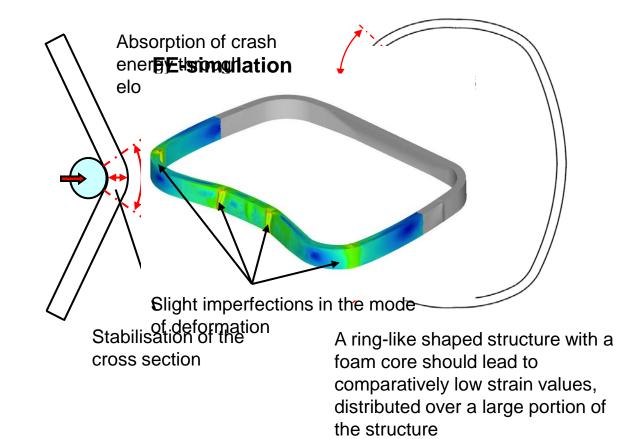
- High stiffness, even in simply shaped parts
- Shaping of the parts is difficult
- Cost for semi-finished parts relatively high
- Crash behaviour must be examined

Sources:

- H C Davies; M Bryant; M Hope; C Meiller: Design, development, and manufacture of an aluminium honeycomb sandwich panel monocoque chassis for Formula Student competition; Journal of Automobile Engineering 2011
- Metawell GmbH
- KTM Sportscar GmbH

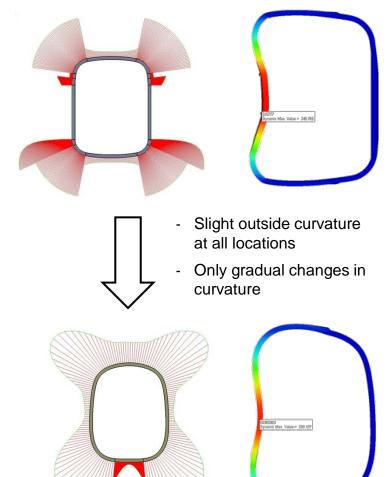


Concept idea: Metal monocoque development


Targets:

- High crashworthiness, by use of sandwich-structures
- Low investment costs due to low number of parts
- Low initial requirements for production facilities
- Use of conventional materials (e.g. PU-foam, aluminium sheet metal)
- construction method similar to a race car
- Weight of the body in white approx.
 80 kg, for a two seater

Passenger compartment structure Mode of deformation



-4,8 %

Ring-frame optimisation

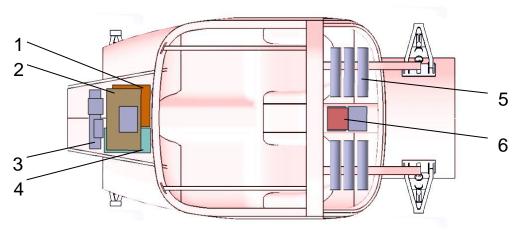
Initial design

- Mass: 23,6 kg
- Deformation under frontal load: 271 mm
- Deformation under side load: 247 mm

Optimised design:

- Mass: 22,5 kg
- Deformation under frontal load: 175 mm -35,3 %
- Deformation under side load: 228 mm -7,6 %

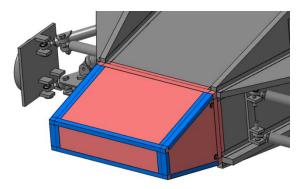
Crash-Simulation - EURO-NCAP-pole-crash



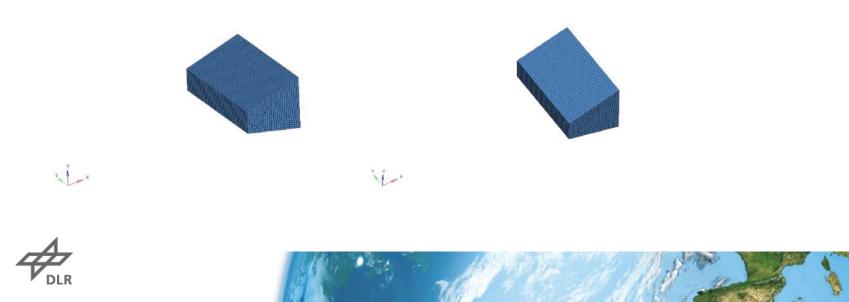
- Good overall crash behaviour under highly concentrated loads (29 km/h, pole diameter 254 mm)
- Lower intrusion than with a conventional structure, no collapse

Components for a fuel cell drive train

Body in white - top view

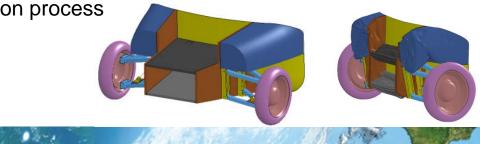

- 1 Fuel cell stacks
- 2 Fuel cell control module
- 3 Cooling module
- 4 Air supply module
- 5 H₂-storage
- 6 Battery

- Mass of drive train components depends on vehicle mass
 → secondary effects of body weight reduction
- Energy storage difficult in alternative drive train concepts
 → high importance of secondary weight reduction

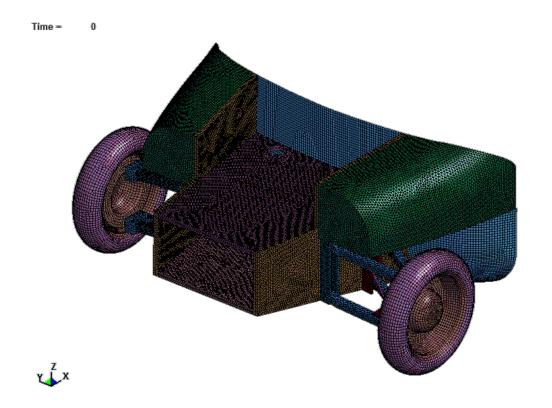


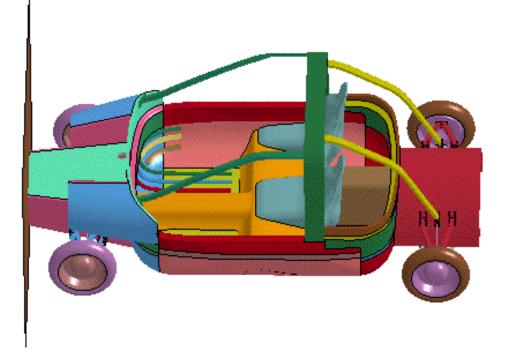
Crashbox for AZT-testing

- Testing formalities:
 - Velocity: 15 +1/-0 km/h
 - 40% overlap


- Comparison 100% and 40% overlap:

Vehicle front structure


- Novel sandwich architecture related to automotive front structures
- Static stability (sub-frame connection)
- High safety for passengers
- Good-natured failure mechanism of the front structure
- High degree of functional integration
 - suspension/ sub-frame
 - components
 - crash performance
- Closed structures (sandwich panels)
- Segmentation of the front structure (central crashbox and sidewise structures)
- Integrated inserts in fabrication process
- Little geometrical complexity


Vehicle front structure

Crash-Simulation - US-NCAP front crash

- 56 km/h
- Rigid barrier

 Damage tolerant crash-behaviour, even when overloaded, little tendency for catastrophic collapse

Summary and overview

- Implementation of an overall sandwich car body concept
- Low mass (80 kg)
- High degree of functional integration
- First successful execution of numeric simulation
 - US-NCAP frontal
 - Pole-crash
 - Component test
- Good-natured failure mechanism

Challenges

- Validation of assembly concept
- Validation of the suspension concept
- Crash testing on the dynamic component testing facility
- Validation of assumpted framework conditions in simulation
 - Material behaviour
 - Numerical settings
- Manufacturing concept (prototype and small series)

Future prospects

- Design of the external shell
- Driveable demonstrator
- Crash testing (components and complete car body)
- Shape and topography optimization
- Aerodynamic investigation (with partners)
- Investigations of structures with high fatigue strength
- Investigations in additional crash scenarios
- Systematic examination of crash behaviour of sandwich structures

German High Tech Champion 2012

Thank you for your attention!

Knowledge for Tomorrow