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Polymer electrolyte fuel cells (PEFCs) are one of the most interesting 
alternatives for a pollution-free energy production. One of the major 
challenges in the development of PEFCs is to exploit the whole 
capacity that inherits a given membrane electrode assembly (MEA). 
Mass transport effects lead to an inhomogeneous electrochemical 
activity over the electrode area. In order to investigate in detail the 
influence of gas composition on the cell performance and to elucidate 
mass transport effects in the cell current-voltage curves, measure-

 

ments

 

of current density distribution and electrochemical impedance 
spectra (EIS) were recorded. 
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Fig.1: Equivalent circuit (EC) used for the simulation of 
EIS inserted into SEM picture of a MEA cross section
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Fig.2: Cylindrical homogeneous porous electrode model

Fig.3: Comparison of EIS (Bode plot) of the same in house made MEA 
produced with carbon supported (60 wt% Pt) catalyst and 20 wt% Nafion, 
operated with H2

 

/O2

 

(□) and H2

 

/air (o) at 500 mAcm-2

Fig.4: Comparison of EIS (Bode plot) measured at 5 A, 80°C, λ=1.5, 
N111 IP CCM, cathode

 

fed

 

with

 

different gas composition

100m 1 2 5 10 30 100 300 1K 3K

8

10

20

15

25

|Z| / m

0

15

30

45

60

75

90
|phase| / o

frequency / Hz

Air 5 A

50% He+50% O2 5 A
50% N2+50% O2 5 A

Oxygen 5 A

10 15 20 25

0

-10

-5

5

Z' / m

Z'' / m


Air 5 A

50% He+50% O2 5 A
50% N2+50% O2 5 A

Oxygen 5 A

Fig.5: Comparison of EIS (Nyquist plot) measured at 5 A, 80°C, 
λ=1.5, N111 IP CCM, cathode

 

fed

 

with

 

different gas composition


	Foliennummer 1

