

### GAST-D Monitoring Results from Post-processed Flight Trial Data: A Performance Evaluation of DLR's GBAS Testbed

Thomas Dautermann, Michael Felux, Anja Grosch, Boubeker Belabbas



#### **Overview**

- → Introduction of the GBAS Testbed
- → 2009 Flight Trial Data
- → Integrity Evaluation
- → Monitoring Results
- → Conclusion and Outlook



#### **The DLR GBAS Testbed**





## **Ground Subsystem Hardware**





#### **Airborne Subsystem Hardware**



#### **Topcon Net-G3 Receiver**

- EGNOS, GPS, GLONASS
- 2 frequencies
- 20 Hz data sampling
- local data recording

Real time data transfer to ground processing facility via TCP/IP

#### **VFW 614 ATTAS**

#### "Advanced Technologies Testing Aircraft System"

Approach Speed 90knots (44 m/s)

Flight Technical Error Autopilot  $\sigma$  <50 m





### **Airborne Subsystem Hardware**



llugzeugbilder,de // Copyright by Kais Chambani Ewew,eddk-spotters,de,vul // 10-Veptember-2004 // CGN // 1095609615



#### **Flight Trial Statistics and Setup**

- → Guidance through ILS
- → GBAS Service Area and PAR
- → Total of 30 approaches
- → Evaluation based on DO253C

| Date       | No. approaches |
|------------|----------------|
| 2009/11/16 | 4              |
| 2009/11/26 | 1              |
| 2009/11/27 | 4              |
| 2009/12/07 | 6              |
| 2009/12/11 | 6              |
| 2009/12/14 | 2              |
| 2009/12/16 | 7              |









#### **Protection Level Behavior**

- → Levels GAST-C vs. GAST-D
- → Nov. 27 2009



in der Helmholtz-Gemeinschaft

# Integrity Evaluation (Stanford Diagram)

→ Service area, all approaches

für Luft- und Raumfahrt e.V.

in der Helmholtz-Gemeinschaft



# Integrity Evaluation (Stanford Diagram)

→ Service area, all approaches

in der Helmholtz-Gemeinschaft



## Code Carrier Divergence Monitor - Nov. 27 2009





CCD [m/s]

#### **Differential Correction Magnitude Check - Nov. 27 09**

→ Differential correction magnitude in position domain

$$\delta PR_{i} = PRC_{i} + RRC_{i}(t - t_{apl}) + TC_{i}$$
  
$$\vec{x} = S\delta PR$$
  
$$DCM_{H} = \sqrt{x_{1}^{2} + x_{2}^{2}}$$

- → In DO253C with satellite clock bias
- → Threshold 200m





#### **Bias Approach Monitor**

in der Helmholtz-Gemeinschaft

Compares 66% position uncertainty and B-Values in position domain to FASVAL (10m) when transitioning to PAR or geometry change occurs



#### **Reference Receiver Fault Monitor - Nov. 27 2009**

→ B-values mapped into position domain

$$|\sum_{i=1}^{N} S_{Apr,vert,i} B(i,j)| + D_{V} < T_{B,air,vert}$$
$$|\sum_{i=1}^{N} S_{Apr,lat,i} B(i,j)| + D_{L} < T_{B,air,lat}$$

$$T_{B,air,vert} = K_{ffd,B} \sqrt{\sigma_{B_{vert}}^2 + \sigma_{D_v}^2}$$
$$T_{B,air,lat} = K_{ffd,B} \sqrt{\sigma_{B_{lat}}^2 + \sigma_{D_L}^2}$$

 $\neg$  K<sub>ffd,B</sub>=5

für Luft- und Raumfahrt e.V.

in der Helmholtz-Gemeinschaft

→ Only while inside PAR



#### **Maximum Element of Pseudoinverse**

- Geometry needs to be screened to avoid positioning with maximum undetectable range error of 1.5m
- Here, limited to 4 but could be increased accoording to FTE
- Maximum S<sub>ij</sub> observed during all flight trials was 2.43





für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

### **DSIGMA Monitor Statistics (D<sub>v</sub> -Vertical)**

- Difference between 30s and 100s smoothed position
- $\neg$  Muphy and Harris (2006):  $\sigma$ =0.22m
- Additional Ionosphere monitor required -> Double Difference Phase





#### **Optimal absolute iono gradient monitoring network**



DLR

in der Helmholtz-Gemeinschaft

Folie 26

#### **Optimal absolute iono gradient monitoring network**





#### **Optimal absolute iono gradient monitoring network**



## Summary

- → GAST-D capability of testbed positive
- → Monitors and system performed within nominal limits

For 2011-2012:

→ Real time functionality



- → Absolute ionosphere gradient monitor set up
- → Initial Autoland Trials with ATTAS (VWF614) or ATRA (A320)



#### Thank you for your attention.

# You are invited to visit the GBAS Display at the DLR Booth.

