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Abstract—Detecting urban regions from very high resolution
aerial and satellite images provides very useful results for urban
planning, and land use analysis. Since manual detection is very
time consuming and prone to errors, automated systems to
detection of urban regions from very high resolution aerial and
satellite images are needed. Unfortunately, diverse characteristics
of urban regions, and uncontrolled appearance of remote sensing
images (illumination, viewing angle, etc.) increase difficulty to de-
velop automated systems. In order to overcome these difficulties,
herein we propose a novel urban region detection method using
local features and a probabilistic framework. First, we introduce
four different local feature extraction methods. Extracted local
feature vectors serve as observations of the probability den-
sity function to be estimated. Using a variable kernel density
estimation method, we estimate the corresponding probability
function. Using modes of the estimated density, as well as other
probabilistic properties, we detect urban region boundaries in the
image. We also introduce data and decision fusion methods to fuse
information coming from different feature extraction methods.
Extensive tests on very high resolution grayscale aerial and
panchromatic Ikonos satellite images indicate practical usefulness
of proposed method to detect urban regions automatically in a
robust and fast manner.

I. INTRODUCTION

Remotely sensed satellite and aerial images provide very
valuable information. However, their covering areas and res-
olution make manual analysis very difficult and prone to
errors. Furthermore, especially urban areas are dynamic en-
vironments. Hence, they should be monitored and analyzed
periodically. Due to these problems, developing algorithms
to detect particular objects in remotely sensed images is a
very important research field. Especially, automatic detection
of urban region boundaries can provide useful information to
municipalities, mapping agencies, military, government agen-
cies, or unmanned aerial vehicle developers. Unfortunately,
automatic object detection algorithms cope with some diffi-
culties on remotely sensed images. First, buildings generally
have diverse characteristics with different texture, color, and
shape. In addition to that, in their appearance on the image, the
illumination, view angle, scaling, occlusion effects are uncon-
trolled. Therefore, classical object detection algorithms cannot
provide an acceptable detection performance. Therefore, more

advanced methods are required for robust detection of the
objects in remotely sensed images.

In related literature, due to the importance of the problem,
many researchers concentrated on developing automated sys-
tems to detect urban regions. Karathanassi et al. [7] used
building density information to classify residential regions.
They benefit from texture information and segmentation to
extract the residential areas. Unfortunately, they had several
parameters to be adjusted manually. Benediktsson et al. [1]
used mathematical morphological operations to extract struc-
tural information to detect the urban region boundaries in
satellite images. Their method is based on using a neural
network which is trained using training urban area regions
to classify input images. Ünsalan and Boyer [16], [18] used
structural features to classify urban regions in panchromatic
satellite images. Since they use statistical classifiers, they also
need training data to detect the urban area in the image. In a
following study, Ünsalan and Boyer [17] associated structural
features with graph theoretical measures in order to grade the
satellite images and extract the residential regions from them.
Fonte et al. [5] considered corner detectors to obtain the type
of the structure in a satellite image. They concluded that corner
detectors might give distinctive information on the type of
structure in an image. Bhagavathy and Manjunath [2] used
texture motifs for modeling and detecting regions (such as golf
parks and harbors) in satellite images. They focused on repeti-
tive patterns in the image. Bruzzone and Carlin [3] proposed a
context-based system to classify very high resolution satellite
images. They used support vector machines fed with a novel
feature extractor. Fauvel et al. [4] fused different classifiers to
extract and classify urban regions in panchromatic satellite
images. Zhong and Wang [20] extracted urban regions in
grayscale satellite images using a multiple-classifier approach.
These last three studies also need training data for urban
area classification. In a related study, Sırmaçek and Ünsalan
[16], used scale-invariant feature transform (SIFT) and graph
theory to detect urban areas and buildings in grayscale Ikonos
images. They used template building images for this purpose.
Although graph theoretical methods are suitable for urban



area detection, they need considerable computation power and
operation time. In a following study, we proposed a method
to detect urban region boundaries using Gabor features alone
[14]. In this study, we extend our previous work by a new
approach for robust detection of urban region boundaries based
on four sets of local invariant features, their fusion in different
levels, and a probabilistic framework. To this end, first we
introduce four different local feature extraction methods as:
Harris corners, Gradient Magnitude Support Region (GMSR)
based features, Gabor features, and FAST features. The ex-
tracted local features serve as observations of the probability
density function (pdf) to be estimated. We formed pdf by using
the nonparametric variable-kernel density estimation method.
Using the estimated density, we detect urban region boundaries
in the given image. To increase robustness, and to merge
information coming from different local features, we present
two different fusion methods in data and decision levels. In
our experiments, we use a dataset obtained from different cities
by two different sensors to test our method. Specifically the
data set is formed of very high resolution panchromatic Ikonos
satellite images and grayscale aerial images. These test images
have also different spatial resolutions and diverse characters.
This data set is the same as in our previous study. Therefore,
we have a chance to compare both our existing and novel
method on the same basis.

II. LOCAL FEATURE EXTRACTION

We detect the urban area in a test image using local feature
points. As first step, before extracting local features, is to apply
smoothing to the input test image by using median filter [15].
This step eliminates small noise terms in the image. Then, we
apply Gabor filtering in different directions. The maxima in
these filter responses lead to local feature points. Next, we will
explore these steps in detail.

A. Gabor Features

Gabor filters are extensively used in texture segmentation
and object recognition [8]. They exhibit desirable charac-
teristics as spatial locality and orientation selectivity [19].
Mathematically, the 2D Gabor filter can be defined as the
product of a Gaussian and a complex exponential function
as follows,

Fϕ(x, y) =
1

2πσ2
g

exp(−u2 + v2

2σ2
g

)exp(j2πfu) (1)

Here, u = x cosϕ + y sin ϕ and v = −x sin ϕ + y cos ϕ.
f is the frequency of the complex exponential signal, ϕ is
the direction of the Gabor filter, and σg is the scale parameter.
These parameters should be adjusted with respect to the image
resolution at hand.

We can detect the edge-oriented urban characteristics (such
as building edges) in a test image using Gabor filtering.
Therefore, for a test image I(x, y) (with size NxM ), we
benefit from the real part of the Gabor filter response as

Gϕ(x, y) = <I(x, y) ∗ Fϕ(x, y) (2)

where ∗ stands for the 2D convolution operation. Here,
Gϕ(x, y) is the maximum for image regions having similar
characteristics with the filter.

In order to extract Gabor features, we first search for
the local maxima in Gϕ(x, y) for x = 1, ..., N and y =
1, ...,M . If any pixel (xo, yo) in Gϕ(x, y) has the largest value
among its neighbors, Gϕ(xo, yo) > Gϕ(xn, yn) ∀(xn, yn) ∈
(xo − 1, yo − 1), (xo, yo − 1), ..., (xo + 1, yo + 1); we call it
as a local maximum. It is a candidate for being a local
feature point. Next, we check the amplitude of the filter
response Gϕ(xo, yo). We call our local maximum (xo, yo) as
a candidate local feature point if and only if Gϕ(xo, yo) > α.
To handle different images, we obtain α using Otsu’s method
on Gϕ(x, y) in an adaptive manner for each image separately
[9]. Therefore, we eliminate the weak candidate local feature
points in future calculations.

To represent each candidate local feature point further, we
assign an orientation and weight to them. We obtain the
weight for each local feature vector similar to the methods in
previous sections. Here, we obtain our binary image Bm(x, y)
by thresholding Gϕ(x, y) with α for weight calculations.
However, we assign the orientation different than the two
previous methods as follows. We check for the orientations in
the eight-neighborhood of (xj , yj) and pick the orientation, θj

as the one having highes magnitude. We apply this procedure
to obtain a robust orientation information. We apply this
procedure in all ϕ directions and obtain Gabor filtering based
local feature vectors as kf = (xj , yj , θj , wj) for j = 1, ..., Kf ,
where Kf is the total number of extracted Gabor features.

B. Harris Corner Features

Fonte et al. [5] considered Harris and Susan corner detectors
to obtain the type of structure in a satellite image. They
concluded that, corner detectors are not sufficient alone to give
distinctive information on the type of structure in an image.
Schmid et al. [11] on the other hand evaluated and compared
different corner detectors for general image processing appli-
cations. They concluded that the best results are provided by
the Harris corner detector [6]. Therefore, in our study we also
benefit from information coming from Harris corner detector.

Harris corners are extracted in three steps: gradient calcula-
tion, matrix formation, and eigenvalue computation. First, we
should calculate smoothed gradients in x and y directions to
detect corners in a given grayscale image I(x, y). We define
smoothed gradient filters for x and y directions as;

gx(x, y) =
−x

2πτ4
g

exp(−x2 + y2

2τ2
g

) (3)

gy(x, y) =
−y

2πτ4
g

exp(−x2 + y2

2τ2
g

) (4)

where τg is the smoothing parameter that we select as unity
due to the scale of Ikonos and aerial images at hand. Although
our method is fairly robust to this parameter, it should be
adjusted by the resolution of the image to be analyzed in future
studies.



We calculate the smoothed gradients for the image I(x, y)
as

Ix = gx(x, y) ∗ I(x, y) (5)

Iy = gy(x, y) ∗ I(x, y) (6)

where ∗ stands for the two dimensional convolution opera-
tion.

Harris corner detector depends on calculating a matrix
(related to autocorrelation function) as

A(x, y) =
(

axx axy

axy ayy

)
(7)

where

axx =
∑
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∑

yi∈W

I2
x(xi, yi) (8)

axy =
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∑

yi∈W

Ix(xi, yi)Iy(xi, yi) (9)

ayy =
∑

xi∈W

∑

yi∈W

I2
y (xi, yi) (10)

Here, axx, axy , ayy are gradient magnitudes averaged over
a window W . We pick this averaging window width as seven
pixels in this study. Further analysis of choosing this parameter
can be found in our previous study [13]. Eigenvalues of
the matrix A provide information about the edge in a given
location. If both eigenvalues of the matrix at a given location
is large, then there is a corner there. Harris and Stephens
suggested that, exact eigenvalue computation can be avoided
by calculating the response function

R(A) = |A| − κtrace2(A) (11)

where κ is a tunable parameter with values from 0.04 to
0.15 were reported as appropriate in the literature. We picked
κ = 0.06 in this study. We also tested the effect of using this
parameter in remote sensing image in our previous study [13].
Corner points are detected by checking the local maxima of
R(A).

As we obtain corner points with their spatial coordinates,
we define our local features using them. Besides spatial
coordinates, we also add orientation and weight information to
features. First, we calculate the gradient orientation O(x, y),
and magnitude M(x, y), for each image as,

O(x, y) = arctan(
Iy(x, y)
Ix(x, y)

) (12)

M(x, y) =
√

I2
x(x, y) + I2

y (x, y) (13)

For the corner point coordinate (xj , yj), the corresponding
orientation is θj = O(xj , yj). To assign a weight for the local
feature vector, we threshold M(x, y) using Otsu’s method
in an adaptive manner [9]. As a result, we obtain Bm(x, y)

as a binary image. In this image, pixels having values one
corresponding to strong responses. We obtain connected pixels
to (xj , yj), we assign their sum as the weight wj . Therefore,
if a candidate local feature vector has more connected pixels,
it has more weight. Finally, we have our Harris corner based
local features as kh(j) = (xj , yj , θj , wj) for j = 1, ..., Kh

where Kh is the total number of detected Harris features.

C. GMSR Features

Next we pick our previous study, to extract gradient mag-
nitude based support regions (GMSR) [16]. There, we used
these features to extract structural and conditional statistical
features to classify land use. Herein, we extract support regions
using smoothed gradient values, namely Ix and Iy given in
5 and 6 respectively. To extract support regions, we threshold
M(x, y) with 10% of the maximum gradient magnitude in the
considered image I(x, y). The rationale here is as follows. We
take the maximum gradient magnitude as a benchmark. After
experiments, we observed that even 10% of this value still
gives information about the structure in the image. Therefore,
we have an adaptive threshold value. Similar to the Harris
corner detection method, we obtain B(x, y) as a binary image
after thresholding. In this image, pixels having a value of one
correspond to support regions.

We define local feature vectors based on the extracted
support regions. Therefore, we pick each support region pixel
as a local feature vector coordinate. Assume that we have a
local feature vector (xj , yj). By definition, B(xj , yj) = 1. We
define the orientation and magnitude of the local feature vector
having spatial coordinate (xj , yj) with the same method that
we used in the previous section. As a result, we obtain our
local features as kg(j) = (xj , yj , θj , wj) for j = 1, ..., Kg

where Kg is the total number of extracted GMSR features.

D. FAST Features

Rosten et al. [10] introduced the FAST method to detect
corners in images in a fast and reliable manner. The method
depends on wedge-model-style corner detection and machine
learning techniques. This method can briefly be explained as
follows. For each corner candidate pixel, its 16 neighbors are
checked. If there exist nine contiguous pixels passing a set of
tests, the candidate pixel is labeled as a corner. These tests
are done using machine learning techniques to speed up the
operation.

In our study, we finally pick FAST to extract local features
from given test image. Assume that, we have a local feature
(FAST corner) at (xj , yj) coordinate. We define the orientation
and magnitude of the local feature, using the same method that
we used in the Harris-corner-based local feature extraction. As
result, we obtain local features as ks(j) = (xj , yj , θj , wj) for
j = 1, ..., Ks where Ks is the total number of extracted FAST-
based features.

III. URBAN REGION DETECTION

Each extracted local feature indicates a characteristic part
of a building to be detected in the image. However, only one



feature is not sufficient enough to detect urbanized region.
In fact, more local features increases detection probability of
interest region. To solve problem, we formulate our urban
region detection method with a probabilistic framework. To do
so, we represent locations which are holding possible building
characteristics as discrete joint random variables. We then
estimate their pdf by taking local features as observations.
Here, we benefit from a variable-kernel density estimation
method. Next, we introduce our probabilistic urban region
detection framework using it. Finally, we introduce data and
decision fusion methods based on our probabilistic framework
to detect buildings.

A. Kernel based Density Estimation

Silverman [12]defines the kernel density estimator for a
discrete and bivariate pdf as follows. First, the bivariate kernel
function, N(x, y) should satisfy the conditions

∑
x

∑
y

N(x, y) = 1 (14)

and

N(x, y) ≥ 0 ∀(x, y) (15)

The pdf estimator with kernel N(x, y) is defined by

p(x, y) =
1

nh

n∑

i=1

N

(
x− xi

h
,
y − yi

h

)
(16)

where h is the window width (also called the smoothing
parameter) and (xi, yi) for i = 1, ..., n are observations from
the pdf to be estimated.

If observations can not be represented reliably by a fixed
kernel function, then a variable kernel function can be used.
This is achieved by adaptation of the amount of smoothing to
the local density of the data (observation). Hence, the scale
parameter is allowed to vary from one observation point to
another. Besides, the estimate is constructed similarly to the
classical kernel estimate. The pdf estimate given in Eqn. 16
then becomes

pv(x, y) =
1

nh

n∑

i=1

1
σi

N

(
x− xi

hσi
,
y − yi

hσi

)
(17)

where σi is the variable scale parameter for i = 1, ..., n.

B. Detecting Urban Regions Using Variable Kernel based
Density Estimation

As we mentioned previously, we use local features (kh,
kg, kf , ks) as observations to estimate the pdf. Without loss
of generality, we explain pdf estimation on a generic local
feature vector k = (xi, yi, θi, wi) for i = 1, ...,Ki. These fea-
tures provide information about urban region having buildings
characteristics. In order to estimate pdf, each local feature will
have its effect on (xi, yi) coordinate. Using N(x, y) in Eqn. 17
as a Gaussian symmetric pdf, which is used in most density
estimation applications, we form the estimated pdf as

p(x, y) =
1
R

Ki∑

i=1

1√
2πσi

exp
(
− (x− x̂i)2 + (y − ŷi)2

2σi

)

(18)
where σi = wi and R is the normalizing constant. We will
use p(x, y) pdf function to detect urban region boundaries. To
do so, we apply automatic thresholding on obtain pdf ???

C. Data Fusion and Decision Fusion for Urban Region De-
tection

The four local feature extraction methods extract different
information from the same image. In the previous section, we
introduced how to separately use this information to detect
urban region boundaries. However, their fusion can also im-
prove our detection performance. Fortunately, our probabilistic
urban region detection approach allows fusion of information.
Therefore, in this section we introduce two feature fusion
methods using probabilistic framework.

Our first method is based on data fusion. This method
is straightforward, such that we use all the local features
extracted with different methods as one unique group. In other
saying, kF = {kh, kg, kf , ks}. We estimate the pdf using
Eqn. 18 with the local feature set kF . We detect urban region
boundaries from the estimated pdf with the same method in
the previous section.

Our second method is based on decision fusion. Here, we
mix the estimated pdfs by different methods and obtain a final
pdf. While mixing the estimated pdfs, we assign a weight to
each of them directly proportional to their maximum mode
value. As we mentioned in the previous section, in detecting
building locations from the estimated pdf we label the mode
with the maximum value as a building. By normalizing four
different pdfs this way, we can mix them and obtain the final
pdf estimate as

pD(x, y) =
1
R

∑

l={h,g,f,s}

pl(x, y)
max(x,y) pl(x, y)

(19)

where ph(x, y), pg(x, y), pf (x, y), and ps(x, y) are the esti-
mated pdfs from kh, kg, kf , and ks. R is again the normalizing
constant. We call this method as decision fusion, since we
apply the fusion operation close to the urban region detection
step. Again, we use the urban region detection method in the
previous section on pD(x, y) to detect urban region bound-
aries.

IV. EXPERIMENTS

We test our probabilistic urban region detection methods on
panchromatic Ikonos and grayscale aerial images of Istanbul
and Adana cities of Turkey.

V. CONCLUSION

Herein, we introduced a novel urban region detection
method based on a probabilistic framework. To do so, we
defined urban region pixels to be detected as joint random vari-
ables. We formed a pdf which shows probabilities of belonging



to an urban region for each image pixel. In estimating the pdf,
we used local features which are extracted from image using
four different methods. However, our probabilistic building
detection framework is not limited to these four methods. It
can be applied to other local feature extraction methods as
well. Then, we detected urban region boundaries using the
estimated pdf. We further improved our urban region detection
method by introducing two feature fusion methods; data fusion
and decision fusion. Obtained performances of the proposed
approach on panchromatic Ikonos satellite and grayscale aerial
images show robustness of algorithm even on images obtained
from very different kind of sensors. We can conclude that our
probabilistic urban region detection method can be used in
real-life applications in a very fast and reliable manner.
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[14] ——, “Urban area detection using local feature points and spatial

voting,” IEEE Geoscience and Remote Sensing Letters, vol. 7 (1), pp.
146–150, Jan. 2010.

[15] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis and
Machine Vision, 3rd ed. CL Engineering, 2007.
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