DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Kontakt | English
Schriftgröße: [-] Text [+]

Unsupervised flood detection in X-band SAR data using multi-contextual Markov image modeling on irregular graphs

Martinis, Sandro und Twele, André (2011) Unsupervised flood detection in X-band SAR data using multi-contextual Markov image modeling on irregular graphs. In: TerraSAR-X Science Team Meeting. 4. TerraSAR-X Science Team Meeting, 14.-16. Feb. 2011, Oberpfaffenhofen.

Dieses Archiv kann nicht den gesamten Text zur Verfügung stellen.


The worldwide increasing occurrence of flooding and the short-time monitoring capability of the new generation of high resolution synthetic aperture radar (SAR) sensors require accurate and automatic methods for the detection of inundations. This is especially important for operational rapid mapping purposes where the fast provision of precise information about the extent of a disaster and its spatio-temporal evolution is of key importance for decision makers and humanitarian relief organizations. In this contribution, a hybrid multi-contextual Markov model for unsupervised near real-time flood detection in multi-temporal X-band synthetic aperture radar (SAR) data is presented. It incorporates scale-dependent as well as spatio-temporal contextual information into the classification process by combining causal with noncausal Markov image modeling related to hierarchical directed and planar un-directed graphs, respectively. Hierarchical Markov modeling is accomplished by hierarchical marginal posterior mode (HMPM) estimation using Markov Chains in scale. This model is initialized by an automatic tile-based thresholding algorithm, to differentiate between open water, flooded vegetation and dry land areas in a completely unsupervised manner. In order to increase computational performance, marginal posterior-based entropies are used for restricting the iterative bi-directional exchange of spatio-temporal information between consecutive images of a time sequence to image elements, exhibiting a low probability to be classified correctly according to the HMPM estimation. The Markov image models, originally developed for inference on regular graph structures of quadtrees and planar lattices, are adapted to the variable nature of irregular graphs, which are related to information driven image segmentation. With respect to accuracy and computational effort, experiments performed on a bi-temporal TerraSAR-X ScanSAR data-set from Lake Liambezi in Namibia during flooding in 2009 and 2010 confirm the effectiveness of integrating hierarchical as well as spatio-temporal context into the labeling process, and of adapting the models to irregular graph structures.

Dokumentart:Konferenzbeitrag (Poster)
Titel:Unsupervised flood detection in X-band SAR data using multi-contextual Markov image modeling on irregular graphs
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iD
Martinis, Sandrosandro.martinis@dlr.deNICHT SPEZIFIZIERT
Twele, Andréandre.twele@dlr.deNICHT SPEZIFIZIERT
Erschienen in:TerraSAR-X Science Team Meeting
Referierte Publikation:Nein
In Open Access:Nein
In ISI Web of Science:Nein
Stichwörter:automatic flood detection, Markov image modeling, HMPM estimation, irregular graph, TerraSAR-X
Veranstaltungstitel:4. TerraSAR-X Science Team Meeting
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:14.-16. Feb. 2011
Veranstalter :DLR Oberpfaffenhofen
HGF - Forschungsbereich:Verkehr und Weltraum (alt)
HGF - Programm:Weltraum (alt)
HGF - Programmthema:W EO - Erdbeobachtung
DLR - Schwerpunkt:Weltraum
DLR - Forschungsgebiet:W EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):W - Vorhaben CHARTA & EO-Krisenlagezentrum (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Zivile Kriseninformation und Georisiken
Hinterlegt von: Martinis, Sandro
Hinterlegt am:14 Jul 2011 13:21
Letzte Änderung:14 Jul 2011 13:21

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Hilfe & Kontakt
electronic library verwendet EPrints 3.3.12
Copyright © 2008-2017 Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.