Abstract
A validity study was conducted for two purposes: to evaluate the importance of knowledge
tests for pilot selection and to validate the knowledge tests of the German Aerospace Center.
The two criteria were a theoretical test given in the Flight Training School and the overall
graduation rate. Regression models were calculated to measure the incremental validity of
knowledge tests beyond ability tests. A further question addressed the comparison of the
predictive validity of knowledge tests and school grades. Knowledge tests contributed 12%
incremental validity and thus yielded similar results to school grades (17%). Both regression
and dropout analyses revealed knowledge tests to be a better predictor of Flight Training
School success than ability tests.

Introduction
Test batteries often contain knowledge tests, as is the case for the Air Force Officer
Qualifying Test (AFOQT, Carretta & Ree, 1996), the Armed Services Vocational Aptitude
Battery (ASVAB, Sands, Waters, & McBride, 1997), or the test battery of the German
Aerospace Center (DLR, Maschke, 2004). What we refer to as knowledge tests are methods
used to reveal the amount of knowledge, skills, and experience of an individual in a given
field. Knowledge tests measure aspects of crystallized intelligence in terms of Cattell’s theory
of intelligence (Cattell, 1987). Meta-analytic research on predictors for job success suggests
that knowledge tests show good prognostic validities in general, and particularly for jobs in
aviation. Schmidt and Hunter (1998) found a mean correlation of $r = .48$ with job success and
an incremental validity beyond cognitive measures of .07 for many jobs. Dye, Reck, and
McDaniel (1993) also found a mean correlation of $r = .47$ between knowledge tests and job
performance. For the field of aviation, Olea and Ree (1994) reported a mean correlation of $r =
.24$ between knowledge tests and practical training success for pilots. In meta-analytical
studies, Martinussen (1996) found prognostic validities of $r = .24$ for tests of aviation
information and in Martinussen (1998) the same magnitude was reported for tests of
mechanical comprehension and aviation information for pilot selection in the Norwegian Air
Force. As a result of her meta studies, Martinussen explicitly recommended that pilot
selection batteries should include knowledge tests about aviation (Martinussen, 1996, p. 16).
The reasons for using knowledge tests for the selection of pilot applicants are different for
ready-entry and for ab-initio applicants. Ready-entry applicants are required to have prior job
knowledge (Ree, Carretta, & Teachout, 1995), which can be defined as “the cumulation of
facts, principles, concepts, and other pieces of information that are considered important in
the performance of one’s job” (Dye et al., 1993, p. 153). It is assumed that job knowledge has
a positive impact on job performance. In contrast, ab-initio applicants are generally tested for
more basic knowledge in mathematics, physics, and technical comprehension. This
corresponds to the distinction of Caretta and Ree (2000, p. 2): “When selecting applicants for
ab-initio training, indicators of ability (i.e. trainability) are emphasized. When selecting from
experienced pilots, commercial carriers tend to emphasize indicators of prior experience (…)
and flying competence (…).” This study concentrates on the impact of knowledge tests for ab-
initio pilots. These tests measure specific knowledge in domains which are important
prerequisites for the theoretical training, that is mathematics, physics, technical
comprehension and English language.
The following questions will be addressed:
1. Do knowledge tests contribute any unique predictive validity to cognitive ability tests?
2. How valuable are knowledge tests compared to school grades as predictors of success in the flight training school?
3. Which tests best predict training dropouts?

Methods
Subjects
The criterion data were collected from 402 student pilots (88% male, 12% female) in their theoretical ab-initio pilot training at the flight school of a major European airline. All students had graduated from high school with a degree suitable for enrolling at a university. The subjects were about 21 years old on average ($SD = 2.5$, range = 18 to 29).

Measures
The predictor data emerged from the first phase of the DLR selection approximately 8 months before the students began their pilot training. The DLR test battery was administered by computer and included seven cognitive ability tests as well as four knowledge tests and two psychomotor ability tests. The cognitive ability tests covered concentration, memory capacity, quantitative ability, and spatial orientation. The knowledge tests covered the topics of English language, mathematics, technical comprehension, physics, and technical basics. Furthermore, school grades in subjects related to theoretical pilot training were recorded. These subjects are English, mathematics, and physics.

The first criterion is a composite score of two test results from a theoretical training first phase (Starter Course) at the flight school. This Starter Course covers basic mathematical and physical knowledge which is considered to be prerequisite for the following theoretical training for the Air Transport Pilot License (ATPL). The second criterion is the pilots’ successful completion of the flight training program. It is a simple pass/fail-criterion. The failed applicants were defined as one group called dropouts.

Analyses
Bivariate correlations between predictors and criteria were calculated. Correlation coefficients were corrected for range restriction and are reported in both forms, corrected and uncorrected. In order to estimate the incremental validity of knowledge tests, multiple regressions were carried out. Furthermore, a dropout analysis with independent-samples t-tests was done in order to find out which tests were most predictive.

Results
1. Knowledge tests and school grades were more strongly related to success in the Flight School Starter Course than the cognitive ability tests.
2. Knowledge tests added 12% to the explained variance of the criterion beyond the cognitive tests. School grades added 17% to the explained variance of the criterion.
3. The most successful tests in predicting the dropouts were the psychomotor tests and school grades followed by the knowledge tests. The cognitive ability tests were least predictive.

Discussion
The knowledge tests turned out to predict both an early and a late criterion well. This result is in line with most of the meta-analytical results mentioned in the introduction. In fact, their predictions of different criteria were even better than those of cognitive ability tests. However, this was surprising in light of research on ab-initio pilots by Olea and Ree (1994) and Ree, Carretta, and Teachout (1995) who demonstrated the predictive power of general intelligence.
(g) for the AFOQT. These studies did not differentiate between fluid intelligence (Gf) and crystallized intelligence (Gc). Instead, they defined every test loading on a first factor as g, regardless of whether it was a reasoning test or a knowledge test. Actually, about half of the tests they used were knowledge tests in terms of the GF-Gc theory, as for example Mathematical Knowledge, Mechanical Comprehension, and Aviation Information. These tests correlated well with practical training results. It seems that Olea and Ree’s g includes both Gc and Gf to the same degree because their test battery, the AFOQT, contains elementary cognitive tasks as well as knowledge tests. Therefore, their results do not contradict the present study.

The present study is consistent with results in the area of admissions to graduate programs. A meta-analysis by Kuncel, Hezlett, and Ones (2001) referring to the Graduate Record Examination included more than 1700 independent samples and demonstrated that domain-specific knowledge tests are better predictors for successful graduation than the ability tests. The same line of results is shown in research on learning and instruction as well as research on expertise. Weinert and Helmke (1995) demonstrated that previous knowledge predicted school grades better than intelligence. Grabner, Stern & Neubauer (2007) showed that the strongest predictor of the attained level of chess experts was deliberate practice and the accumulation of a broad knowledge base rather than general intelligence. Based on this evidence, knowledge tests should receive more attention in aviation psychology.

References

