

ASLO Conference, San Juan, Puerto Rico, Feb 13-18, 2011

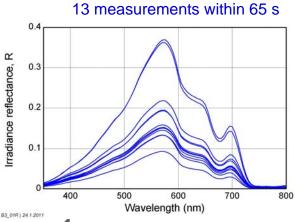
Spectral variability of downwelling irradiance in water induced by wave focusing

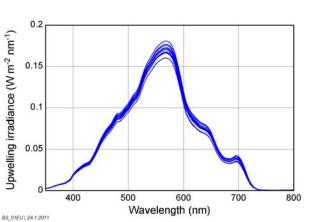
P. Gege, N. Pinnel

Overview

- Motivation
- Observations
- Model results
- Summary and conclusions

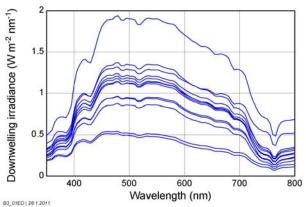
Motivation


Campaigns


Small boat in shallow areas of 3 German lakes 421 data sets, 4375 spectra at 0–5 m depth

Observation:

Reflectance spectra (in shallow water) can vary strongly in magnitude and spectral shape – why?

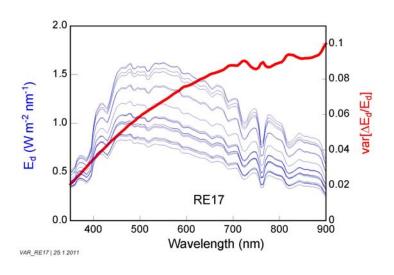

Bodensee 26.6.2004, 12:20
Bottom type: sediment
Water depth: 1.40 m
Sensor depth: 0.28 m

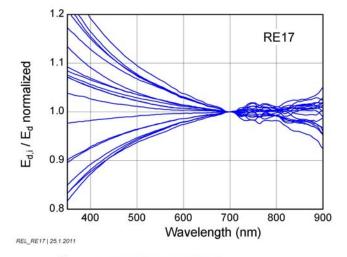
Due to variability of downwelling irradiance

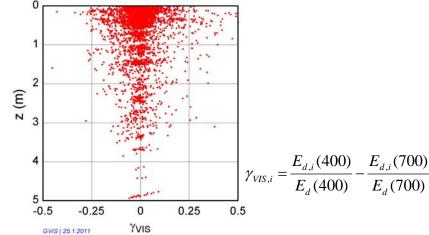


Fig. 6. Irradiance pattern beneath a superposition of sinusoidal waves with wavelengths of 2.25, 0.2, and 0.05 m and with amplitudes of 0.1, 0.01, and 0.002 m. Note that the addition of very small amplitude waves significantly alters the irradiance pattern.

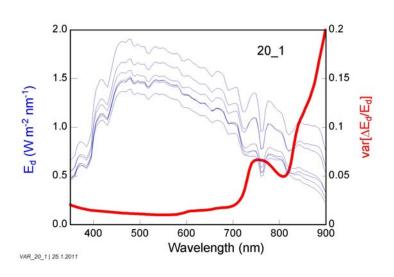
Zanefeld et al. (2001): Influence of surface waves on measured and modeled irradiance profiles. *Applied Optics* **40**, 1442-1449.


Very complete book on the topic:

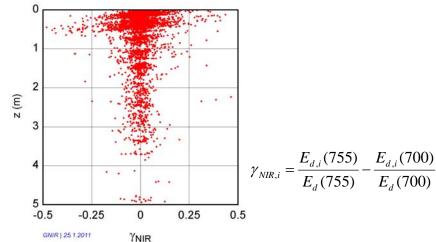

R. E. Walker, Marine Light Field Statistics (Wiley, 1994)


- Wave focusing induces large fluctuations
- Statistics is well known
- Wavelength dependency?
- Other sources of variability?

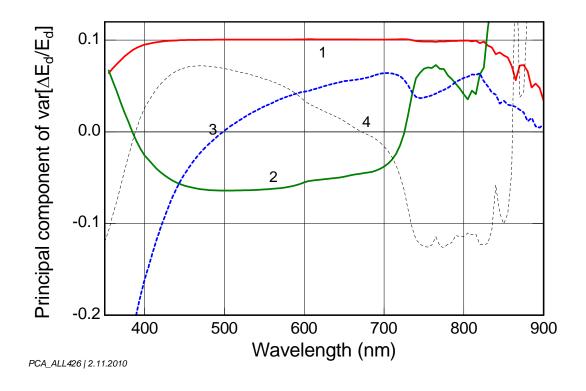
Wavelength dependency of E_d variability (Type 1)



- Smooth spectral shape across VIS
 - no spectral fine structures from E_d
 - power law
- Relevance in our data set
 - on average: 5.4 %
 - little depth dependency



Wavelength dependency of E_d variability (Type 2)



- Characteristic feature in NIR
 - dominated by water absorption
- > Relevance in our data set
 - 0 1 m: 5.7 %
 - > 1 m: 3.7 %

Sources of irradiance variance (from PCA)

421 data sets from depths 0 to 5 m Proportions of variance: 1 = 85.5 %, 2 = 6.2 %, 3 = 4.7 %, 4 = 1.6 %.

Irradiance model

Irradiance is sum of a direct and a diffuse component

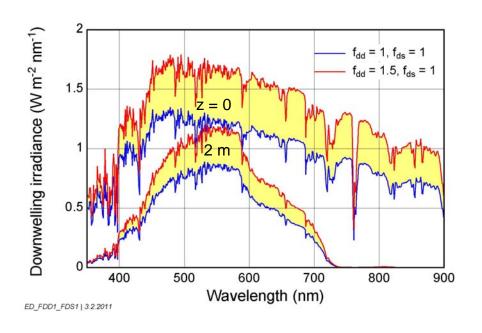
$$\mathsf{E}_{\mathsf{d}}(\lambda,\mathsf{z}) = \mathsf{f}_{\mathsf{dd}}\mathsf{E}_{\mathsf{dd}}(\lambda,\mathsf{z}) + \mathsf{f}_{\mathsf{ds}}\mathsf{E}_{\mathsf{ds}}(\lambda,\mathsf{z})$$

E_d: downwelling irradiance

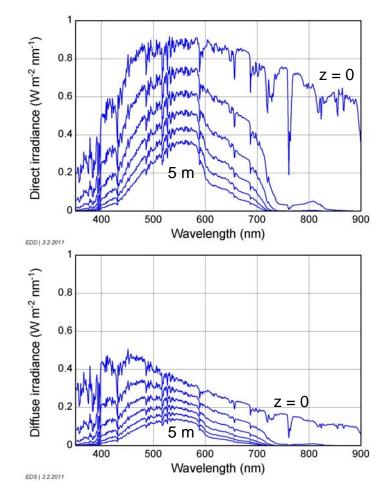
 E_{dd} , E_{ds} : direct / diffuse component of E_{d}

 f_{dd} , f_{ds} : actual fraction of E_{dd} , E_{ds}

Wave focusing changes f_{dd} and f_{ds}

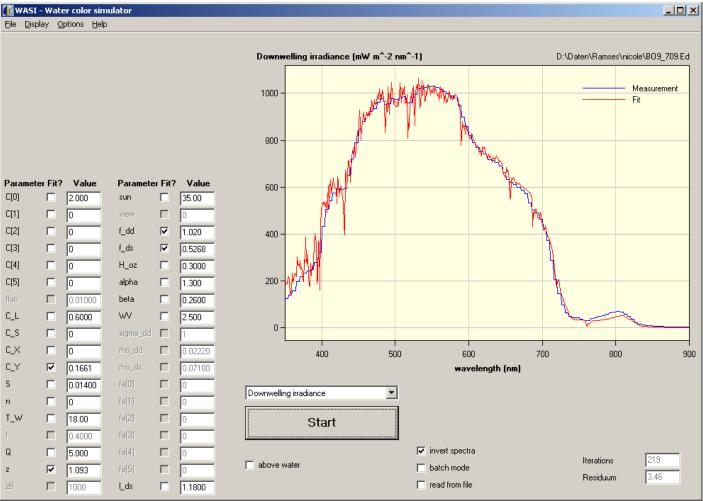

Depth dependency of each component according to Lambert-Beer law

$$\mathsf{E}_{\mathsf{dd}}(\lambda, \mathsf{z}) = \mathsf{E}_{\mathsf{dd}}(\lambda, 0\text{-}) \; \mathsf{exp}\{-[\mathsf{a}(\lambda) + \mathsf{b}_{\mathsf{b}}(\lambda)]\mathsf{z}/\mathsf{cos}\theta_{\mathsf{sun}, \mathsf{w}}\}$$

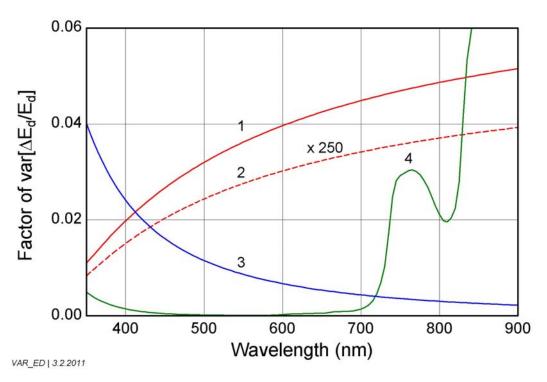

$$\mathsf{E}_{\mathsf{ds}}(\lambda,\mathsf{z}) = \mathsf{E}_{\mathsf{ds}}(\lambda,0\text{-}) \exp\{-[\mathsf{a}(\lambda)+\mathsf{b}_{\mathsf{b}}(\lambda)]\mathsf{z}\mathsf{I}_{\mathsf{ds}}\}$$

z: water column thickness above sensor. Waves alter z.

Illustration of irradiance model


$$\mathsf{E}_{\mathsf{d}}(\lambda,\mathsf{z}) = \mathsf{f}_{\mathsf{d}\mathsf{d}}\mathsf{E}_{\mathsf{d}\mathsf{d}}(\lambda,\mathsf{z}) + \mathsf{f}_{\mathsf{d}\mathsf{s}}\mathsf{E}_{\mathsf{d}\mathsf{s}}(\lambda,\mathsf{z})$$

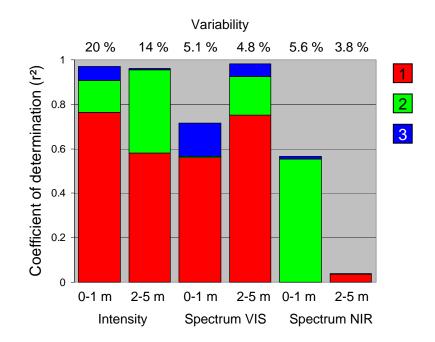
Inversion of irradiance measurements

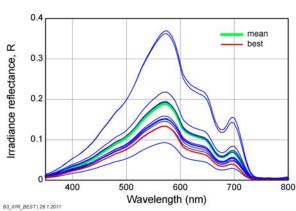

WASI software

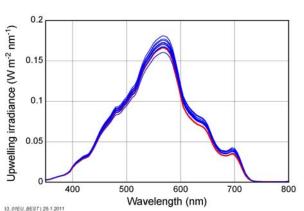
ftp.dfd.dlr.de/ pub/wasi

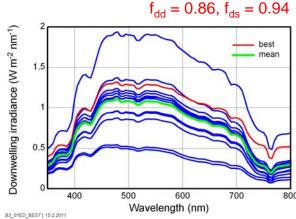
Sources of irradiance variance (from model)

- Changes of direct radiation due to waves
- Changes of direct radiation due to sensor tilt
- Changes of diffuse radiation due to waves
- 4. Changes of sensor depth due to waves and swaying boat


$$\operatorname{var}\left[\frac{\Delta E_{d}(\lambda,z)}{E_{d}(\lambda,z)}\right] = \begin{bmatrix} r_{d}(\lambda,z) \\ r_{d}(\lambda,z)+1 \end{bmatrix}^{2} \operatorname{var}\left[\frac{\Delta f_{dd}}{f_{dd}}\right] + \begin{bmatrix} r_{d}(\lambda,z) \\ r_{d}(\lambda,z)+1 \end{bmatrix}^{2} \operatorname{tan}^{2}(\theta'_{sun}+\theta_{s}) \operatorname{var}\left[\theta_{s}\right] + \begin{bmatrix} 1 \\ r_{d}(\lambda,z)+1 \end{bmatrix}^{2} \operatorname{var}\left[\frac{\Delta f_{ds}}{f_{ds}}\right] + \begin{bmatrix} 1 \\ r_{d}(\lambda,z)+1 \end{bmatrix}^{2} \begin{bmatrix} K_{dd}(\lambda)r_{d}(\lambda,z) \\ \cos\theta'_{sun} + l_{ds}K_{ds}(\lambda) \end{bmatrix}^{2} \operatorname{var}\left[z\right]$$




Summary


3 sources of irradiance variability

- 1. Changes of direct radiation due to waves
- Changes of sensor depth due to waves and swaying boat
- 3. Changes of diffuse radiation due to waves

