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Summary

Inthe present study direct numerical simulations (DNS)adfitien-Schlichting
waves in attached boundary layers will be shown in companigth local linear sta-
bility theory (LST). The goal of the investigation is a siratibn of such modes in
separated flow where LST is limited due to its basic appro@bk. method pro-
vides an improved understanding of the physical mechani@hind the transition
scenario in the linear as well as in the non-linear regime.

1 Introduction

For present technical applications transition predictiotfaminar boundary layers
is mainly carried out by local and non-local Linear Stapilitheory (LST) since
alternatives like Direct Numerical Simulation (DNS) of cplate configurations are
computationally too expensive for realistic Reynolds nensbThough proven as a
reliable tool for aircraft design, LST techniques are iietdd in different ways, for
example their applicability in separated boundary layenm®estricted by the under-
lying theory. A physically based simulation technique wbobnsequently provide
insight into the transition scenario in such complex flondgeand furthermore al-
low a verification of given LST methods.

Numerical studies of different accuracy and effort are fidssstarting from
stability calculations coupled with standard CFD simuwla$i of entire configura-
tions as well as basic studies of single forward-facing-fitawv by DNS. All these
techniques have to be verified by analytical solutions atidai@d by experimental
data from literature.

Tollmien-Schlichting waves are well known as primary imslities in the tran-
sition process of boundary layers from laminar to turbulgmw (Tollmien [9],
Schlichting [7]). Since these modes are essentially twoedisional instabilities
their properties can be described by time accurate two-tsimeal simulations, re-
solving the perturbation flow. For this purposé’4 order implicit finite difference
method is chosen to resolve the modes of interest even attadimgrid resolution
[1]. This method has shown very good results in the hypecsagiime by simulat-
ing Mack-modes in supersonic boundary layers [6].



In the following study validations between DNS and LST siatigins of the 2D
modes are discussed. They are shown, based on Blasius bpuagkers as well
as the profiles studied by Seitz [8] in comparison with resfrihm the LST code
NOLOT. Temporal approaches as well as spatial simulatigri3MS are compared
in the following sections with LST data of the growth rated &me perturbation pro-
files. Furthermore physical questions like saturation seféhilities are addressed.

2 Numerical Approach

2.1 Direct numerical ssimulation

The basic FLOWer code solves the compressible Reynoldsgee Navier Stokes
equations on block-structured grids with second ordefiiiume techniques. The
high-order version, described in the following [1] usesrtbworder central differ-
encing based on a standard compact approach. High-ordgramrilters that are
applied at the end of each time step and sponge-zone boucaladgijtions are op-
tional to reduce reflections. For the present wofé"aorder filter and the standard
conservative form of the Euler terms is chosen. Time advaec¢ is applied by
a five-step second order Runge Kutta method. The solvediegeatre the com-
pressible Navier-Stokes equations considering a peréectwith density, velocity
components;;, pressure and internal energy, written in conservation law form
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whereE = e+ u,u;/2. Forcing termsf; andg are included in the right hand side of
the equations such that a specified parallel baseglow u; (y), E(y) is time inde-
pendent for comparisons of DNS results with temporal LSBduatt practice these
terms are evaluated numerically within the code by compudimd storing the initial
residual. The equations are closed with the perfect gashaveanstitutive relations
for ¢; andr;; [6]. This approach is used in the following without modificat for
all grids using the described temporal approach as well asatial simulations
without the source termg andg.
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2.2 Linear stability theory

The NOLOT code [2][3], which is a spatial linear stabilityds is a development
of DLR and FOI and can be used for local as well as non-localyaga. In this

work the local linear spatial approach is applied which isilasgt of the non-local
stability equations. The equations are derived from thetgus of conservation of



mass, momentum and energy, which governing the flow of a uisammpressible,
ideal gas, formulated in primitive variables. All flow and tedal quantities are
decomposed into a steady laminar basic fiopand an unsteady disturbance flgw

q(2,y,2,t) = q(z,y) + §(z,y, 2, t) (4)
The disturbancé is represented as a harmonic wave

q(z,y,2,t) = 4(x, y) expli(ax + fz — wi)] ®)

with the complex-valued amplitude functign Since NOLOT is a spatial code the
wave numbers: andg are complex quantities and the frequencis a real value.
—ay is the complex growth rate. Since the chosen DNS approachéséntly tem-
poral in nature, a Gaster transformation [6] of the LST giovetes is applied for
comparisons between DNS and LST. The NOLOT code is validayestveral test
cases against published results, including DNS, PSE (phzel stability equa-
tions), multiple scales methods and LST. A good summaryef/#lidation cases is
given by Hein et al.[2].

3 Gridsand Initial Solutions

For the grid generation of the study a stretching functiamsisd which provides an
extended grid-point resolution near= 0, including geometries with a forward fac-
ing step. This wall normal grid distribution is given byiah function with an iter-
atively determined stretching factor. The temporal caltiahs use periodic bound-
ary conditions in ther andz directions. No-slip walls at adiabatic wall temperature
are applied. At the outer boundaries characteristic carditare used. The initial
solution for generic boundary layers and for inflow conditas obtained from a
separate solution of the similarity equations for comghésdoundary layer flow,
solved by a shooting method. Other cases are calculatedfordary layers from
a NACA wing profile. For these cases a Mach numbgg, = 0.204, a Reynolds
number based on the displacement thickness o£R800, corresponding to flight
No. 8, Measuring point 13 at/L = 0.34 from [8] is considered. The wall-normal
co-ordinate as well as all other quantities derived frontiapeo-ordinates are nor-
malized by the displacement thickness. The temporal DNSefitstabilities is
initialized by an artificial disturbance at= 0 which is given by an exponentially
decaying harmonic function for the v-velocity componerttisTis a rough approx-
imation of the eigenfunction which will decay during the fifew thousand time
steps while the amplified eigenfunction at the boundaryrlayitk develop. For the
spatial calculations the same technique is used at the itdftamdary with a tem-
poral disturbance profile of the same shape.



4 Reaults

4.1 Validation of thetemporal approach

Pressure and velocity contours for the DNS calculationsadiimiien Schlichting
waves are shown in Fig. 1 for the boundary layer flow with, = 0.204, Re =
2900 to give an overview of the mode-shape in terms of these diiesitFrrom these
simulations perturbation profiles and amplification ratesextracted as shown in
Fig. 2 in comparison with LST data, calculated by the NOLO@&due to the spa-
tial LST calculations, the corresponding amplificatioresafire results of a Gaster
transformation (Fig. 2b). Very good agreement is achiewedte eigenfunctions
as well as for the amplification rates, which deviate by lést0.4%. To demon-
strate the capabilities of the DNS approach the saturationgss of a perturbed
Blasius-flow is calculated for similar flow conditions buttlva differentU,, at the
boundary layer edge which reduces the growth rate in thaliregime of the tran-
sition process in comparison with the former calculatiae(kig. 3). In this figure
the solid line is an extrapolation of the linear part while #guares are the ongo-
ing DNS results. The saturation is clearly visibld@atA) = —2, which is a value
within the expected regime of 1% of the boundary layer eddrcity (see [4]). The
v-component of the perturbation is shown in Fig. 3, bottomtiime-instants from
the linear (left) and non-linear regime (right). The infloerof the saturation is espe-
cially visible in the near-wall region for the contour-lgefv = 0. As a concluding
remark, good agreement between the LST and DNS result ismignated.

4.2 Spatial smulations

To show the feasibility of DNS calculations for spatiallyvéoping instabilities
with the described approach, a boundary layer profile ovextapfhte is simulated.
in analogy to the temporal approach only the wall normal congmt is perturbed
at the inflow boundary by using the same approximation foptivéurbation profile
as for the respective temporal simulation. The chosen eutftmdition is a simple
first order extrapolation of the flow quantities. Five TS-ef@ngth are taken for the
streamwise flowfield-extend with a resolution of about 16scpér wavelength. A
contour plot of the wall normal component in this flow field fosn in Fig. 4. The
TS-waves show a visible growth in their amplitudes duringjrtipropagation in x-
direction, visible in the lower picture of Fig. 4, where the@mponentis shown on
the vertical axis. For such a small domain the growth of tireupleation is too small
to calculate the amplification rate, so for a validation & #mplification factor with
LST data, extended simulations are necessary.

With the described technique, simulations of the develagroETS-waves over
a forward facing step with re-circulating flow are carried.ol generic test case
calculated by Kruse [5] with the DLR TAU code, is chosen. Thvflconditions
areM = 0.15, Repstep = 1332. A grid with 1536 streamwise cells and 360 span-
wise cells is generated, scaled on the step height ijth), = 1 and using the
sinh-stretching function as already described. With this scpthe inflow plane is



located atz = —160, the outflow plane at = 4160 and the farfield boundary at
y = 44. For the inflow condition a Blasius-profile with a displacerhthickness of
01, = 0.45 - hgep (Se€ [5]) is generated and perturbed in the already destribe
way with an amplitude 06.008 - U,, and a frequency corresponding to a typical
amplified wavelength behind the step of ab®it /., This is a sufficiently large
inflow-perturbation to guarantee the development of iribtils behind the step but
results for the defined test case in TS-waves in the non+lieggme, so for compar-
ison with LST data additional calculations with smaller ditaples are necessary.
The separation length in front of the step is approxima3edy .., for the initial
unpertturbed flow field, which is well in the range of the pretiary TAU-results
(see Fig. 5). The resulting contours of the wall-normal gityoare shown in Fig. 6
for the perturbed flow in a selected region to demonstratenehanism of insta-
bility generation. While the wall-normal extend of the pebations in front of the
separation region becomes smaller, they are amplified agsnstream of the re-
attachment. The reason for this behaviour can be seen im@ohéar perturbation of
the separation by the incoming TS-waves and consequentbda ne-amplification
downstream of the step. As expected the frequency of thengdiféed modes is the
same as at the inflow plane and the wavelength is growing dicepto the grow-
ing boundary layer in this region. Additional simulationglwave to confirm this
hypothesis.

5 Conclusion

The present paper introduces a direct numerical simulagoach to study first
modes in separated flow as a supporting technique for lirtaebilisy theory. The
code is validated by the calculation of instability modesliffierent boundary layer
profiles in comparison with LST data. For the shown inveséidazase good agree-
ment between DNS and LST results in the linear regime can bwdstrated and
the saturation process for the two-dimensional approagimislated with good suc-
cess. First spatial simulations of a Blasius boundary layer a flat plate and the
flow over a forward facing step have been carried out to sheWehsibility of the
approach in calculating such interesting cases. Thesdations have to be contin-
ued in additional numerical studies.
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Figure 1: Tollmien Schlichting waves developing in a sulisdroundary layer at Re 2900.
(a) pressure contours, (b) contours of normal velocity
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Figure 2: DNS and LST of a Tollmien Schlichting wave /af = 0.204, Re = 2900,
Us = 85.4m/s, (a) comparison of eigenfunction shape. (b) Direct nunaérsémulation
of disturbance amplitude (symbols) and linear fit of the gtorate (solid line)
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Figure 3: DNS and LST of a Tollmien Schlichting waveMt = 0.204, Re = 2900, Us, =
66.7m /s, Top: Direct numerical simulation of disturbance ampléudymbols) and linear
stability theory growth rate (solid line), bottom: v-conts of perturbation flow in the linear
(left) and non-linear regime (right)
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Figure 4: Spatial development of a Tollmien Schlichting waleveloping in a subsonic
boundary layer afRe = 2900. Top: v-contours in the flow field, bottom: 3D view with
wall normal component on vertical axis.

Figure 5: Seaparted base flow on a forward facing stéy at 0.15, Repstep = 1332.
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Figure 6: Spatial development of a Tollmien Schlichting eaver a forward facing step at
M = 0.15, Repstep = 1332.



