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Summary

In the present study direct numerical simulations (DNS) of Tollmien-Schlichting
waves in attached boundary layers will be shown in comparison with local linear sta-
bility theory (LST). The goal of the investigation is a simulation of such modes in
separated flow where LST is limited due to its basic approach.The method pro-
vides an improved understanding of the physical mechanismsbehind the transition
scenario in the linear as well as in the non-linear regime.

1 Introduction

For present technical applications transition predictionin laminar boundary layers
is mainly carried out by local and non-local Linear Stability Theory (LST) since
alternatives like Direct Numerical Simulation (DNS) of complete configurations are
computationally too expensive for realistic Reynolds numbers. Though proven as a
reliable tool for aircraft design, LST techniques are restricted in different ways, for
example their applicability in separated boundary layers is restricted by the under-
lying theory. A physically based simulation technique would consequently provide
insight into the transition scenario in such complex flow fields and furthermore al-
low a verification of given LST methods.

Numerical studies of different accuracy and effort are possible, starting from
stability calculations coupled with standard CFD simulations of entire configura-
tions as well as basic studies of single forward-facing-step flow by DNS. All these
techniques have to be verified by analytical solutions and validated by experimental
data from literature.

Tollmien-Schlichting waves are well known as primary instabilities in the tran-
sition process of boundary layers from laminar to turbulentflow (Tollmien [9],
Schlichting [7]). Since these modes are essentially two-dimensional instabilities
their properties can be described by time accurate two-dimensional simulations, re-
solving the perturbation flow. For this purpose a4th order implicit finite difference
method is chosen to resolve the modes of interest even at a limited grid resolution
[1]. This method has shown very good results in the hypersonic regime by simulat-
ing Mack-modes in supersonic boundary layers [6].



In the following study validations between DNS and LST simulations of the 2D
modes are discussed. They are shown, based on Blasius boundary layers as well
as the profiles studied by Seitz [8] in comparison with results from the LST code
NOLOT. Temporal approaches as well as spatial simulations by DNS are compared
in the following sections with LST data of the growth rates and the perturbation pro-
files. Furthermore physical questions like saturation of instabilities are addressed.

2 Numerical Approach

2.1 Direct numerical simulation

The basic FLOWer code solves the compressible Reynolds-averaged Navier Stokes
equations on block-structured grids with second order finite volume techniques. The
high-order version, described in the following [1] uses fourth-order central differ-
encing based on a standard compact approach. High-order compact filters that are
applied at the end of each time step and sponge-zone boundaryconditions are op-
tional to reduce reflections. For the present work a6th order filter and the standard
conservative form of the Euler terms is chosen. Time advancement is applied by
a five-step second order Runge Kutta method. The solved equations are the com-
pressible Navier-Stokes equations considering a perfect gas with densityρ, velocity
componentsui, pressurep and internal energye, written in conservation law form
as
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whereE = e+uiui/2. Forcing termsfi andg are included in the right hand side of
the equations such that a specified parallel base flowρ(y), ui(y), E(y) is time inde-
pendent for comparisons of DNS results with temporal LST data. In practice these
terms are evaluated numerically within the code by computing and storing the initial
residual. The equations are closed with the perfect gas law and constitutive relations
for qi andτij [6]. This approach is used in the following without modification for
all grids using the described temporal approach as well as for spatial simulations
without the source termsfi andg.

2.2 Linear stability theory

The NOLOT code [2][3], which is a spatial linear stability code, is a development
of DLR and FOI and can be used for local as well as non-local analyses. In this
work the local linear spatial approach is applied which is a subset of the non-local
stability equations. The equations are derived from the equations of conservation of



mass, momentum and energy, which governing the flow of a viscous, compressible,
ideal gas, formulated in primitive variables. All flow and material quantities are
decomposed into a steady laminar basic flowq̄ and an unsteady disturbance flowq̃.

q(x, y, z, t) = q̄(x, y) + q̃(x, y, z, t) (4)

The disturbancẽq is represented as a harmonic wave

q̃(x, y, z, t) = q̂(x, y) exp[i(αx + βz − ωt)] (5)

with the complex-valued amplitude function̂q. Since NOLOT is a spatial code the
wave numbersα andβ are complex quantities and the frequencyω is a real value.
−αi is the complex growth rate. Since the chosen DNS approach is inherently tem-
poral in nature, a Gaster transformation [6] of the LST growth rates is applied for
comparisons between DNS and LST. The NOLOT code is validatedby several test
cases against published results, including DNS, PSE (parabolized stability equa-
tions), multiple scales methods and LST. A good summary of the validation cases is
given by Hein et al.[2].

3 Grids and Initial Solutions

For the grid generation of the study a stretching function isused which provides an
extended grid-point resolution neary = 0, including geometries with a forward fac-
ing step. This wall normal grid distribution is given by asinh function with an iter-
atively determined stretching factor. The temporal calculations use periodic bound-
ary conditions in thex andz directions. No-slip walls at adiabatic wall temperature
are applied. At the outer boundaries characteristic conditions are used. The initial
solution for generic boundary layers and for inflow conditions is obtained from a
separate solution of the similarity equations for compressible boundary layer flow,
solved by a shooting method. Other cases are calculated for boundary layers from
a NACA wing profile. For these cases a Mach numberM∞ = 0.204, a Reynolds
number based on the displacement thickness of Re= 2900, corresponding to flight
No. 8, Measuring point 13 atx/L = 0.34 from [8] is considered. The wall-normal
co-ordinate as well as all other quantities derived from spatial co-ordinates are nor-
malized by the displacement thickness. The temporal DNS of the instabilities is
initialized by an artificial disturbance att = 0 which is given by an exponentially
decaying harmonic function for the v-velocity component. This is a rough approx-
imation of the eigenfunction which will decay during the first few thousand time
steps while the amplified eigenfunction at the boundary layer will develop. For the
spatial calculations the same technique is used at the inflowboundary with a tem-
poral disturbance profile of the same shape.



4 Results

4.1 Validation of the temporal approach

Pressure and velocity contours for the DNS calculations of Tollmien Schlichting
waves are shown in Fig. 1 for the boundary layer flow withM∞ = 0.204, Re =
2900 to give an overview of the mode-shape in terms of these quantities. From these
simulations perturbation profiles and amplification rates are extracted as shown in
Fig. 2 in comparison with LST data, calculated by the NOLOT code. Due to the spa-
tial LST calculations, the corresponding amplification rates are results of a Gaster
transformation (Fig. 2b). Very good agreement is achieved for the eigenfunctions
as well as for the amplification rates, which deviate by less than 0.4%. To demon-
strate the capabilities of the DNS approach the saturation process of a perturbed
Blasius-flow is calculated for similar flow conditions but with a differentU∞ at the
boundary layer edge which reduces the growth rate in the linear regime of the tran-
sition process in comparison with the former calculation (see Fig. 3). In this figure
the solid line is an extrapolation of the linear part while the squares are the ongo-
ing DNS results. The saturation is clearly visible atln(A) = −2, which is a value
within the expected regime of 1% of the boundary layer edge velocity (see [4]). The
v-component of the perturbation is shown in Fig. 3, bottom for time-instants from
the linear (left) and non-linear regime (right). The influence of the saturation is espe-
cially visible in the near-wall region for the contour-lines ofv = 0. As a concluding
remark, good agreement between the LST and DNS result is demonstrated.

4.2 Spatial simulations

To show the feasibility of DNS calculations for spatially developing instabilities
with the described approach, a boundary layer profile over a flat plate is simulated.
in analogy to the temporal approach only the wall normal component is perturbed
at the inflow boundary by using the same approximation for theperturbation profile
as for the respective temporal simulation. The chosen outflow condition is a simple
first order extrapolation of the flow quantities. Five TS-wavelength are taken for the
streamwise flowfield-extend with a resolution of about 16 cells per wavelength. A
contour plot of the wall normal component in this flow field is shown in Fig. 4. The
TS-waves show a visible growth in their amplitudes during their propagation in x-
direction, visible in the lower picture of Fig. 4, where the v-component is shown on
the vertical axis. For such a small domain the growth of the perturbation is too small
to calculate the amplification rate, so for a validation of the amplification factor with
LST data, extended simulations are necessary.

With the described technique, simulations of the development of TS-waves over
a forward facing step with re-circulating flow are carried out. A generic test case
calculated by Kruse [5] with the DLR TAU code, is chosen. The flow conditions
areM = 0.15, Rehstep = 1332. A grid with 1536 streamwise cells and 360 span-
wise cells is generated, scaled on the step height withhstep = 1 and using the
sinh-stretching function as already described. With this scaling the inflow plane is



located atx = −160, the outflow plane atx = +160 and the farfield boundary at
y = 44. For the inflow condition a Blasius-profile with a displacement thickness of
δ1,in = 0.45 · hstep (see [5]) is generated and perturbed in the already described
way with an amplitude of0.008 · U∞ and a frequency corresponding to a typical
amplified wavelength behind the step of about20 · hstep. This is a sufficiently large
inflow-perturbation to guarantee the development of instabilities behind the step but
results for the defined test case in TS-waves in the non-linear regime, so for compar-
ison with LST data additional calculations with smaller amplitudes are necessary.
The separation length in front of the step is approximately3.8 · hstep for the initial
unpertturbed flow field, which is well in the range of the preliminary TAU-results
(see Fig. 5). The resulting contours of the wall-normal velocity are shown in Fig. 6
for the perturbed flow in a selected region to demonstrate themechanism of insta-
bility generation. While the wall-normal extend of the perturbations in front of the
separation region becomes smaller, they are amplified againdownstream of the re-
attachment. The reason for this behaviour can be seen in a harmonic perturbation of
the separation by the incoming TS-waves and consequently a mode re-amplification
downstream of the step. As expected the frequency of the re-amplified modes is the
same as at the inflow plane and the wavelength is growing according to the grow-
ing boundary layer in this region. Additional simulations will have to confirm this
hypothesis.

5 Conclusion

The present paper introduces a direct numerical simulationapproach to study first
modes in separated flow as a supporting technique for linear stability theory. The
code is validated by the calculation of instability modes ofdifferent boundary layer
profiles in comparison with LST data. For the shown investigated case good agree-
ment between DNS and LST results in the linear regime can be demonstrated and
the saturation process for the two-dimensional approach issimulated with good suc-
cess. First spatial simulations of a Blasius boundary layerover a flat plate and the
flow over a forward facing step have been carried out to show the feasibility of the
approach in calculating such interesting cases. These simulations have to be contin-
ued in additional numerical studies.

Acknowledgements

Parts of this work were carried out while the first author was aGuest Scientist at
the University of Southampton. The authors would like to acknowledge the support
received from Prof. N. Sandham and Prof. Dr. C.-C. Rossow in setting up this visit.



References
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Figure 1: Tollmien Schlichting waves developing in a subsonic boundary layer at Re 2900.
(a) pressure contours, (b) contours of normal velocity
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Figure 2: DNS and LST of a Tollmien Schlichting wave atM = 0.204, Re = 2900,
U∞ = 85.4m/s, (a) comparison of eigenfunction shape. (b) Direct numerical simulation
of disturbance amplitude (symbols) and linear fit of the growth rate (solid line)
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Figure 3: DNS and LST of a Tollmien Schlichting wave atM = 0.204, Re = 2900, U∞ =

66.7m/s, Top: Direct numerical simulation of disturbance amplitude (symbols) and linear
stability theory growth rate (solid line), bottom: v-contours of perturbation flow in the linear
(left) and non-linear regime (right)
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Figure 4: Spatial development of a Tollmien Schlichting wave developing in a subsonic
boundary layer atRe = 2900. Top: v-contours in the flow field, bottom: 3D view with
wall normal component on vertical axis.

Figure 5: Seaparted base flow on a forward facing step atM = 0.15, Rehstep = 1332.

Figure 6: Spatial development of a Tollmien Schlichting wave over a forward facing step at
M = 0.15, Rehstep = 1332.


