elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Kontakt | English
Schriftgröße: [-] Text [+]

Chemistry–Climate Model Simulations of Twenty-First Century Stratospheric Climate and Circulation Changes

Butchart, Neal und Cionni, I. und Eyring, V. und Shepherdyring, T.G. und Waugh, D.W. und Akiyoshi, H. und Austin, J. und Brühl, C. und Chipperfield, M. und Cordero, E. und Dameris, M. und Deckert, R. und Dhomse, S. und Frith, S. und Garcia, R.R. und Gettelman, A. und Giorgetta, A. und Kinnison, D. E. und Li, F. und Mancini, E. und McLandress, C. und Pawson, S. und Pitari, G. und Plummer, D.A. und Rozanov, E. und Sassi, F. und Scinocca, J.F. und Shibata, K. und Steil, B. und Tian , W. (2010) Chemistry–Climate Model Simulations of Twenty-First Century Stratospheric Climate and Circulation Changes. Journal of Climate, 23, Seiten 5349-5374. DOI: 10.1175/2010JCLI3404.1 .

Dieses Archiv kann nicht den gesamten Text zur Verfügung stellen.

Offizielle URL: http://journals.ametsoc.org/doi/full/10.1175/2010JCLI3404.1

Kurzfassung

The response of stratospheric climate and circulation to increasing amounts of greenhouse gases (GHGs) and ozone recovery in the twenty-first century is analyzed in simulations of 11 chemistry–climate models using near-identical forcings and experimental setup. In addition to an overall global cooling of the stratosphere in the simulations (0.59 ± 0.07 K decade−1 at 10 hPa), ozone recovery causes a warming of the Southern Hemisphere polar lower stratosphere in summer with enhanced cooling above. The rate of warming correlates with the rate of ozone recovery projected by the models and, on average, changes from 0.8 to 0.48 K decade−1 at 100 hPa as the rate of recovery declines from the first to the second half of the century. In the winter northern polar lower stratosphere the increased radiative cooling from the growing abundance of GHGs is, in most models, balanced by adiabatic warming from stronger polar downwelling. In the Antarctic lower stratosphere the models simulate an increase in low temperature extremes required for polar stratospheric cloud (PSC) formation, but the positive trend is decreasing over the twenty-first century in all models. In the Arctic, none of the models simulates a statistically significant increase in Arctic PSCs throughout the twenty-first century. The subtropical jets accelerate in response to climate change and the ozone recovery produces a westward acceleration of the lower-stratospheric wind over the Antarctic during summer, though this response is sensitive to the rate of recovery projected by the models. There is a strengthening of the Brewer–Dobson circulation throughout the depth of the stratosphere, which reduces the mean age of air nearly everywhere at a rate of about 0.05 yr decade−1 in those models with this diagnostic. On average, the annual mean tropical upwelling in the lower stratosphere (70 hPa) increases by almost 2% decade−1, with 59% of this trend forced by the parameterized orographic gravity wave drag in the models. This is a consequence of the eastward acceleration of the subtropical jets, which increases the upward flux of (parameterized) momentum reaching the lower stratosphere in these latitudes.

Dokumentart:Zeitschriftenbeitrag
Titel:Chemistry–Climate Model Simulations of Twenty-First Century Stratospheric Climate and Circulation Changes
Autoren:
AutorenInstitution oder E-Mail-Adresse der Autoren
Butchart, Neal Met Office Hadley Centre, Exeter, UK
Cionni, I.DLR-PA
Eyring, V.DLR-PA
Shepherdyring, T.G.Univ. of Toronto, CND
Waugh, D.W.Johns Hopkins Univ., Baltimore, MD, USA
Akiyoshi, H.Univ Toronto, CND
Austin, J.Geophysical Fluid Dynamics Lab., Princeton, NJ, USA
Brühl, C.MPIC, Mainz
Chipperfield, M.Univ. of Leeds, UK
Cordero, E.San Jose State Univ., San Jose, CA, USA
Dameris, M.DLR-PA
Deckert, R.DLR-PA
Dhomse, S.Univ. of Leeds, UK
Frith, S.Science Systems and Applications, Inc., Lanham, MD, USA
Garcia, R.R.NCAR, Boulder, CO, USA
Gettelman, A.NCAR, Boulder, CO, USA
Giorgetta, A.MPIM, Hamburg
Kinnison, D. E. NCAR, Boulder, CO, USA
Li, F. Univ. of Maryland, Baltimore, MD, USA
Mancini, E.Univ. L’Aquila, L’Aquila, I
McLandress, C.Univ. of Toronto, CND
Pawson, S.NASA, Greenbelt, MD, USA
Pitari, G.Univ. L’Aquila, L’Aquila, I
Plummer, D.A.Environment Canada, Toronto, CND
Rozanov, E.Physical–Meteorological Observ., Davos, CH
Sassi, F.Naval Research Laboratory, Washington, D.C, USA
Scinocca, J.F.Univ. of Victoria, Victoria, BC, CND
Shibata, K.Meteorological Research Inst., Tsukuba, J
Steil, B.MPIC, Mainz
Tian , W.Univ. of Leeds, UK
Datum:2010
Erschienen in:Journal of Climate
Referierte Publikation:Ja
In Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:23
DOI :10.1175/2010JCLI3404.1
Seitenbereich:Seiten 5349-5374
Status:veröffentlicht
Stichwörter:Chemistry, atmospheric, Climate models, Stratosphere, Greenhouse gases, Ozone
HGF - Forschungsbereich:Verkehr und Weltraum (alt)
HGF - Programm:Weltraum (alt)
HGF - Programmthema:W EO - Erdbeobachtung
DLR - Schwerpunkt:Weltraum
DLR - Forschungsgebiet:W EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):W - Vorhaben Atmosphären- und Klimaforschung (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Physik der Atmosphäre > Dynamik der Atmosphäre
Hinterlegt von: Jana Freund
Hinterlegt am:05 Jan 2011 14:12
Letzte Änderung:26 Mär 2013 13:25

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Copyright © 2008-2013 Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.