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Abstract 
Class parameterization and class generation enhance the 
object-oriented means of Modelica, either by making 
them better accessible for the user or more powerful to 
apply for the library designer. Nevertheless, the current 
solution in Modelica does not properly distinguish 
between these two concepts, and hence it does not 
represent a fully satisfying solution. This paper presents a 
proposal or vision for a partial redesign of the language 
by separating class parameterization and class generation. 
In this way, the language becomes simpler and yet more 
powerful. The derived concepts may serve as guideline 
for future considerations of the Modelica language design. 

Keywords     language design, class-parameterization 

1. Introduction 
This paper presents the concepts of class parameterization 
and class generation for equation-based modeling 
languages as Modelica. It is highlighted why these 
concepts are important for a modeling language and how 
they could be better regarded in the future. 

The paper is organized as a proposal for a future design 
of Modelica. It is instructive in order to be concise. The 
suggestions are concrete in order to be illustrative. 
Nevertheless, what finally matters is the abstract idea 
behind our concept that could as well be finally realized 
in a different form. 

To understand the current situation in Modelica [6,8], 
the problems of a language designer, and the motivation 
behind our proposal, let us review the most important 
fundamentals. 

1.1 Processing Scheme 

The translation of Modelica models into code for 
simulation purposes, involves several stages. These are 
depicted in Figure 1.  

The semantics of the language concern nearly every 
part of this processing scheme. For instance, the 
causalization of an equation is done in stage 4, whereas 
the realization of a model extension concerns stage 2. 
Even with the same syntactic elements, a modeler can 

formulate expressions that belong to different stages.  
An if-branch that depends on a parameter value 

corresponds to stage 2. If its condition is, however, 
dependent on a variable then it belongs to stage 4 and 5. 
In this paper, we are concerned with class 
parameterization and class generation. These two aspects 
belong to stage 2 of the processing scheme.  

Modelica contains language constructs of all these 
processing stages in one single layer. This makes the 
language very powerful and highly convenient. To some 
degree this style results out of the declarative character of 
Modelica. It enables the modeler to focus on what he 
wants to model rather than thinking about how to create a 
computational realization. In this way, a modeler can 
achieve his or her goals without being fully aware of the 
underlying processing scheme. 

Nevertheless, this puts an increasingly higher burden 
on the designers of such a language. Whereas the modeler 
does not need to know about the processing scheme, a 
language designer must have a very detailed knowledge. 
He or she is required to foresee all possible combinations 
with their potential problems that are introduced by a new 
language construct. As a language drifts towards higher 
complexity, this becomes a very hard task. 

1.2 Structural Type System 

The declarative style of Modelica is supported by a 
structural type system [1].  This means that the type 
results solely out of the structure of a class. Roughly 
speaking, type A is a sub-type of (or compatible to) type 
B, if all (public) elements of B are declared (by the same 
identifier) in A, and these elements are themselves sub-
types of their counterparts in B. 

In a structural type-system, the type is therefore 
independent from the methods used for its generation, and 
hence different lines of implementation may lead to 
compatible types. This is a big strength of structural type 
systems. Compatible types can have a common ancestor 
(mostly a partial model), but it is not required. 

With respect to class generation and class 
parameterization, two additional definitions of 
compatibility must be concerned that impose additional 
restrictions on the simple sub-type relationship. Plug 
compatibility requires that, in addition to sub-type 
compatibility, no further connections are introduced that 
must be connected from outside. Plug compatibility is 
required when models get exchanged by class 
parameterization. 

 



 
 

Figure 1: Processing Scheme of a Modelica Translator 

Inheritance compatibility means that type A could replace 
type B as an ancestor for an arbitrary type C. To this end, 
the sub-type requirements are extended to protected 
elements. Inheritance compatibility is required for class 
generation purposes. The relation between these different 
sub-type relations is depicted in Figure 2.  
 

 
Figure 2. Set relation of different type requirements 
 

1.3 Available Language Constructs 

Let us briefly review those language constructs that are to 
be revised in the future. The use of all these keywords is 
then demonstrated by means of examples in the next 
section. 

1.3.1 replaceable and redeclare 

A modeler can declare a component B of model M as 
replaceable. By doing so, this component can be 
replaced, either in a possible extension of the model M or 
by a modifier that is applied to an instance M. 

In order to replace the component B, the keyword 
redeclare (redeclare replaceable resp.)  has to be 
applied. A new component A is then put into the place of 
B.  

The type of the component A can be further 
constrained with the keyword constrainedby. It is 
applied at the original declaration that was marked as 
replaceable. 

1.3.2 Parameters for classes 

The keyword replaceable cannot only be applied to the 
declaration of components but also to the definition of 
models, packages, records, etc. To this end, the term 
replaceable model (or package, record, …) has been 
introduced. 

Such definitions can then be extended by the use of the 
term redeclare model or (redeclare replaceable 
model resp.). Also the replacement of definitions can be 
constrained by the keyword constrainedby. 

It is in general not possible to extend from replaceable 
model definitions. An exception is enabled by the term 
redeclare [replaceable] model extends. 

1.3.3 Conditional Declarations 

In addition to these tools, there are also conditional 
declarations available in Modelica. To this end, a short if-
statement is appended to the normal declaration of a 
component. It is, however, not possible to combine 
conditional declarations with replaceable components or 
with components that are being redeclared. 

2. The Important Difference between Class 
Generation and Class Parameterization 

The presented language elements in Modelica may now 
serve two entirely distinct purposes: class 
parameterization and class generation. It is very important 
to make a proper distinction between these two concepts, 
since the lack of this distinction is the root of the current 
problems in Modelica. In order to clarify the situation, we 
present a representative set of examples for both concepts. 

2.1 Examples for Class Parameterization 

Class parameterization means that a class itself or a 
component is a parameter. 

Class parameterization with respect to Modelica does 
mostly mean, model parameterization. To this end, a sub-
component is made exchangeable by means of the 
parameter menu. Let us review three typical examples of 
this process. 

2.1.1 Container Model (Wheels and Tires) 

The container model is one of the most primitive methods 
to achieve class-parameterization. Essentially, it 
represents a set of conditionally declared components. 
Given a parameter value (mostly an enumeration value), 
one of the conditions evaluates to true, whereas all other 
components are disabled. 

IdealRolling...

RigidWheel1

SlickTyred...

TreadTyred...

DynamicTyr...

DynamicTyr...

ExplDynami...

fram
e_a

 
Figure 3. Container model for different wheel models 



Figure 3 presents a container model that enables 
switching between different wheel models. The model 
parameterization is done indirectly by transforming a 
regular parameter into the conditional declaration of sub-
models.  

 
model MultiLevelWheel 
public 
  parameter ModLevels level //enumeration 
  Interfaces.Frame_a frame_a; 
  … 

IdealWheel wheel1(...) 
  if level == ModLevels.IdealWheel; 
RigidWheel wheel2(...)  
  if level == ModLevels.RigidWheel; 
SlickTyredWheel wheel3(...)  
  if level == ModLevels.SlickTyredWheel; 
  … 

equation 
  connect(wheel1.frame_a, frame_a); 
  connect(wheel2.frame_a, frame_a); 
  connect(wheel3.frame_a, frame_a); 
  … 
end MultiLevelWheel; 

 

Given the construct of replaceable/redeclare, this 
design pattern has actually become redundant. It is, 
however still applied. It is better suited if the sub-models 
shall not be public but protected. Another application 
results, if the standard dropdown list (of the Dymola GUI) 
for replaceable components is not the preferred 
parameterization since another user interface is 
demanded. 

2.2 Exchangeable Resistor Model 

The standard method of model parameterization is 
performed by means of a replaceable model. An electric 
circuit may contain a resistor component. If it is declared 
as replaceable: 

 
model Circuit1 

replaceable Resistor R1(R=100); 
… 

end Circuit1; 

A potential user of this circuit model may now exchange 
the resistor 
model Test 

Circuit1 C( 
  redeclare ThermoRes R1(R=100) 
 ); 

   … 
end Test; 

If the circuit contains two resistors, each can be 
redeclared separately. Alternatively, the circuit can have a 
parameter for the model definition. 
model Circuit2 

replaceable model R = Resistor(R=100); 
R R1; 
R R2; 
… 

end Circuit2 

A user can now redefine the model definition:  

model Test 
Circuit2 C( 
  redeclare model R = ThermoRes(R=100) 
); 
 … 

end Test 

2.2.1 Media-Exchange 

Having parameters for class definitions enables more 
advanced modeling techniques. The models of the 
Modelica Fluid [4,5] library serve as a good example. 
Here each fluid model contains a parameter for a package 
definition. Given this package, the model declares now 
those package members that it requires. 

 
model TemperatureSensor  
  replaceable package Medium =   
    Interfaces.PartialMedium; 
  Interfaces.FluidPort_in port( 
    redeclare package Medium = 
      Medium 
    ) 

Medium.BaseProperties medium; 
  Modelica.Blocks.Interfaces.RealOutput 
T(unit="K"); 
 
equation  

… 
port.p = medium.p; 
port.h = medium.h; 
port.Xi = medium.Xi; 
T = medium.T; 

end Temperature; 

2.3 Examples for Class Generation 

Class Generation is a collective term for all those 
methods that are used to generate a new class. Most 

commonly, the new class is created out of one or more 
existing ones. 

The most common technique of class-generation in 
Modelica is class extension that is represented by the 
keyword extends. 

Mostly, replaceable and redeclare are used for class 
parameterization, but there are also applications for class 
generation. The following two examples shall 
demonstrate this. 

2.3.1 MultiBondLib 

The MultiBondLib [11] features various mechanical 
libraries based on the bond-graphic modeling 
methodology. There is the planar mechanical library and  
the 3D-mechanical library. In addition, there is the 3D-
mechanical library that includes the modeling of force-
impulses. This library was derived from its continuous-
system version. To this end, the connector of the classic 
mechanical package was made replaceable. 

 
connector Frame  

Potentials P; 
flow SI.Force f[3]; 
flow SI.Torque t[3]; 



end Frame; 
 

model FixedTranslation  
replaceable Interfaces.Frame_a frame_a; 
replaceable Interfaces.Frame_b frame_b; 
… 

end FixedTranslation; 

The connector of the impulse library was then extended 
from its continuous version. 
connector IFrame  
  extends Mech3D.Interfaces.Frame; 

Boolean contact; 
SI.Velocity Vm[3]; 
SI.AngularVelocity Wm[3]; 
flow SI.Impulse F[3]; 
flow SI.AngularImpulse T[3]; 

end IFrame; 

Finally, each component of the impulse-library was 
inherited from its continuous counterparts, had its 
connectors replaced and the required impulse equations 
added: 
model FixedTranslation  
  extends Mech3D.Parts.FixedTranslation( 
    redeclare Interfaces.IFrame_a frame_a, 

  redeclare Interfaces.IFrame_b frame_b 
 ); 

  … 
equation  
  … 
  frame_a.contact = frame_b.contact; 
  frame_a.F + frame_b.F = zeros(3); 
  frame_a.T + frame_b.T + 
    cross(r,R*frame_b.F) = zeros(3); 
  frame_a.Vm + ( transpose(R) * 
    cross(frame_a.Wm,r) ) = frame_b.Vm; 
  frame_a.Wm = frame_b.Wm; 
end FixedTranslation; 

Making the connector directly replaceable is not the 
preferred solution given the current means of the 
language. It would be better to use a model parameter C 
(via replaceable model) for the connectors and declare the 
connectors by the use of C. At its time of creation, 
however, this solution was not available for the 
MultiBondLib. 

2.3.2 Medium equations in the MediaLib 

Another example for class generation can be found in the 
Modelica MediaLib. Here, an individual package is 
created for each medium. Among other members the 
package contains a model BaseProperties that 
describes those balance equations that are specific to the 
medium (e.g. the ideal gas law). 

A new medium may now inherit from an existing 
medium package and redefine its BaseProperties 
model. In this way a class is generated for each medium: 

 
partial package SingleGasNasa  

extends PartialPureSubstance(…) 
redeclare model extends BaseProperties(…)  

equation  
… 

  MM = data.MM; 
  R = data.R; 

  h =h_T(data, T, h_offset); 
  u = h - R*T; 
  d = p/(R*T); 
  state.T = T; 
  state.p = p; 
end BaseProperties; 

2.4 Foresight versus Hindsight 

Since both, class parameterization and class generation 
are performed during the preprocessing stage in the 
translation process, it may be tempting to use one set of 
tools for both purposes as is done in Modelica. However, 
this turns out to be problematic because of the entirely 
distinct motivation behind these two concepts. 

Class parameterization is requested by the model 
designer to be performed by a user of its library. Thus, it 
is performed in foresight since the corresponding 
parameterization needs to be declared. Rules for class 
parameterization must be rather strict to prohibit abuses 
by the user to a meaningful extent. 

In contrast, class generation is done in hindsight. It is 
performed by the model-designer and requested from a 
previous library. Since it is done in hindsight and mostly 
performed by experts, rules for class generation should 
not be prohibitive. It is not possible to foresee which 
models might be extended; so a potential keyword 
extendable does not make much sense. It is, however, 
also not foreseeable which elements might be 
redeclared; so the keyword replaceable is 
inappropriate. Prohibitive measures will tend rather to 
corrupt existing classes than to prevent the faulty creation 
of new classes.  

2.5 Different Aspects of the Type System 

Another vital difference between class parameterization 
and class generation is highlighted by the criteria of the 
type system that are relevant for each concept. 

A proper class parameterization requires that the new 
type A is compatible to the original type B. Obviously A 
must be a sub-type of B. An even more strict requirement 
is that it needs to be plug-compatible since it is not 
possible (and certainly not convenient) to introduce new 
connections into a parameterized model. 

Plug-compatibility is of no relevance for class 
generation. When a new class is generated, new 
connections can also be introduced in an effortless way. 
Instead, it is important that the new type is inheritance-
compatible since potential extensions of a redefined 
model ought to remain valid. 

Evidently, separate aspects of the type system need to 
be concerned for both tasks. 

2.6 Current Deficiencies 

The confusion of class parameterization and class 
generation involves a number of disadvantages: 

 Non-uniform parameterization: The syntax that has 
been chosen for class parameterization purposes is 
different to those of normal parameters. One 
unfortunate consequence of this decision is that class 



parameterization becomes inaccessible for normal 
parameter computations. For instance, it is not 
possible to combine if-statements with redeclarations. 
This means that redeclarations cannot be coupled to 
conditions. 

 Inappropriate sub-elements: Since model parameters 
are not properly declared as parameters but more as a 
replaceable sub-element this leads to inappropriate 
structures. For instance, models that contain sub-
packages. It makes sense that a model cannot contain 
a package, but it makes no sense that a model can 
contain a package just because it is replaceable. 

 Prohibitive class generation: Since potential 
redeclarations and redefinitions must be marked as 
replaceable in advance, the options for class 
generation are unnecessarily limited. Often this leads 
to an ex post modification of the original library in 
order to enable the desired class generation 

 Unwanted parameterization: Since potential 
redeclarations or definitions for the purpose of class 
generation need to be marked as replaceable an 
unwanted parameterization is introduced into the 
models. In order to avoid this, the replaceable objects 
are often moved to the protected section.  

 Unnecessary restriction: To extend from replaceable 
model definitions is currently prohibited in Modelica 
(with one exception). This restriction will turn out to 
be unnecessary. 

 Overelaborated syntax: The current syntax is simply 
more complicated than actually necessary and can be 
simplified. 

3. Design Decisions 
For the partial redesign of Modelica, we establish the 
following guidelines: 

 Separate class parameterization and class generation 

We want to clearly separate class parameterization 
from class generation. In this way, the specific needs 
and motivation of each concept can be optimally 
taken into account. 

 Give classes first class status on the parameter level 

We want to treat class parameters just as any normal 
parameter. There is no reason why parameters should 
be restricted to base-types or quasi base-types. This 
will simplify and unify the syntax. Furthermore, class 
parameterization can be integrated in the normal 
computation process for parameters. 

 Enable non-prohibitive class generation 

Class generation shall be performed by a special 
subset of keywords. It shall be designed in a way that 
it is not hampered or prohibited by means that require 
foresight. Maximum freedom should be given to the 
modeler in order to create new classes. On the other 
hand side, existing classes shall be protected from 
corruption. 

 Unify and simplify the language 

The complete language should be simpler and more 
powerful after the revision. It should also be more 
intuitive to understand and to learn. 

4. Improved Class Parameterization 
In this section, we will propose new language constructs 
for class parameterization. In order to show their potential 
applications and highlight their advantages, we will 
review the examples of chapter 2.1. 

4.1 Unification of Expression 
In a first, preparatory step, we integrate the expression 

of classes into normal statements. To this end, we have to 
slightly change the modifier syntax of an expression: the 
modification is now applied in curly brackets instead of 
round parentheses. 

This change has been implemented in order to make a 
class-definition with its modifier distinguishable from a 
function-call with its argument-list. In this way you know 
that foo(x=a) represents a function call but 
bar{x=a} represents a class-definition with its modifier. 
The term baz{p=b}(a) represents then consequently a 
parameterized function call.  

Since classes can be used in expressions, the language 
power is increased, e.g., by using classes in if-clauses or 
as arrays: 

 
// The result of this if-clause is a class 
if expr then foo2{x2=b} else foo2{x2=c}; 

 
 // An array of 4 classes 
 foo2[4] 
 foo2{x2=a}[4] 

One might hesitate, to integrate class-expressions as basic 
part of normal expressions, since this gives classes a first-
class status [2,3] and opens up the grammar quite 
substantially. It might seem smarter (and easier to 
achieve) to form two separate kinds of expressions that 
are distinguished on the top level: normal expressions and 
class expressions. However, this is misleading for the 
following reasons. 

Firstly, normal expressions and class expressions can 
both start with a name. This means that an undefined 
number of look-up tokens are required to distinguish these 
two kinds of expressions. Practically this means that an 
extra keyword is needed, but this leads to an ugly and 
unpractical syntax. Also, many syntax elements would 
need to be doubled and still two kinds of grammars would 
be required. Hence such a solution would not be fully 
generic. 

A1.B2.C3.Model{…}           class expression 
A1.B2.C3.Function(…)   normal expression 

Secondly, the integration of class-expressions into normal 
expressions provides an important generalization for 
future language extensions. Whereas many syntactic 
formulations such as foo{x2=3} + foo{x2=2} are 
semantically still invalid for this proposal, this may 
change in future revisions. Let us envision a future 



version of Modelica (5 or 6) that enables anonymous 
declarations of models or records. Then, the former 
statement foo{x2=3} + foo{x2=2} may become valid 
if, for instance, foo is a record and overloads the + 
operator. Hence the integration of class-expressions opens 
up a number of fruitful opportunities for future language 
revisions. It is notable that the first-class status of higher-
level language constructs is absolutely common in 
contemporary programming languages. Even a few 
equation-based modeling languages (Sol [9,10], Hydra 
[7], Modeling Kernel Language [2]) have explored this 
important topic. 

In this proposal, only the following uses of class-
expressions shall be semantically supported. All other 
uses yield error messages. 

 Pure class expressions: foo{x=y} 

 Class expressions in if-statements:  if a then 
foo{x=y} else bar{x=y} 

 Array-lists of class-expressions: {foo{x=y}, 
bar{x=y}, …} 

4.2 Say It As You Want It: Treat Component 
Parameters as Normal Parameters 

If a component (let us suppose: a resistor) shall be a 
parameter of a model, it is the most natural thing, just to 
write it down as a normal parameter. Instead of the 
awkward formulation: 

 
model Circuit1 

replaceable ThermoRes R1(k=0.5)  
constrainedby Resistor(R=100); 
… 

end Circuit1 

simply write it as a component parameter: 
 

model Circuit1 
parameter component Resistor R1{R=100} = 

ThermoRes{k=0.5} 
… 

end Circuit1 

A user of this circuit model may now give a new 
parameter value and thereby replace the prior model. 

 
model Test 

Circuit1 C{R1 = ThermoRes{k=1.2}}; 
… 

end Test 

The type of the parameter hereby represents the constraint 
type for the parameterized model. Naturally one can apply 
modifiers also on the constraint type, and of course the 
new resistor type must be plug-compatible to this 
constraint type.  

The keyword component is necessary in order to 
avoid potential ambiguities. These originate from the fact 
that the formulation of a component parameter is a 
language construct that performs two tasks at the same 
time. One, it enables direct class-parameterization of a 
component. Two, it declares a component that invokes an 
instance. 

Hence it must be clarified if the = operator assigns a 
value 
parameter Real r = 1;  

or a component (sub-model) 
parameter component Resistor R = ThermoRes; 

In these cases, the meaning is clear, but when records are 
concerned both interpretations of the assignment are 
meaningful: 

 
//value assignment 
parameter Complex c1 = Complex.j();  

 
//component assignment 
parameter component Complex c2 =  
                      Quaternion;   

In fact, the keyword does not just change the 
interpretation of the assignment, but also if the values of 
the instance shall be constant or not. In the example 
above, c1 is constant-valued but c2 may express variable 
values. 

4.3 Say It As Want You Want It: Treat Class 
Parameters as Normal Parameters 

The very same can be done for parameters that identify 
class definitions, such as model parameters or package 
parameters. Again, the best solution is to simply write it 
down as one wants it to have. So, instead of writing: 

 
replaceable model R1 = Resistor{R=100}  
  constrainedby Resistor; 

you can simply turn the model into a parameter: 
 

parameter model Resistor R1 =  
                  Resistor{R=100}; 

Since such parameters will ultimately always be used for 
class parameterization, plug-compatibility shall also be 
required here. In this way, the temperature sensor of 
section 2.1 could be formulated as follows: 

 
model TemperatureSensor  
 parameter package  
  Interfaces.PartialMedium Medium; 

 
  Interfaces.FluidPort_in port{ 
    Medium = Medium} 

Medium.BaseProperties medium; 
Blocks.Interfaces.RealOutput T{unit="K"}; 

equation  
… 

end Temperature; 

4.4 Improved Computational Power 

One obvious advantage is that the language has been 
unified. Now, the same notation is used for all kinds of 
parameters. It has also become simpler. The keywords 
replaceable, redeclare and constrainedby are not 
needed any more.  

Another major advantage is that class parameters can 
be computed with as any other parameter. In this way, 



conditional declarations become redundant in many cases. 
Let us review the example of the container model. Here 
we had to transform an enumeration into a class. This was 
done by number of conditional declarations. Now, we 
have the option to use an array of model parameters for 
this purpose. 
model MultiLevelWheel 
public 

parameter TModLevels level //enumeration 
Interfaces.Frame_a frame_a; 
… 

protected 
final parameter model BaseWheel  
  wheelModels[7]= { IdealWheel {…},  
                    RigidWheel{…}, 
                    SlickTyredWheel{…}, 
                    … }; 

  final parameter component BaseWheel wheel  
  = wheelModels[level]; 

equation 
  connect(wheel.frame_a, frame_a); 
end MultiLevelWheel; 

Here we can organize different model parameters in an 
array. In the same way, this could be done in a record.  It 
is important to notice that class parameters become 
accessible to all kinds of computations. Especially useful 
is the conditional evaluation: 

 
parameter Boolean constantTemp = true; 
final parameter BaseTempModel 
ambientTemperature =  

if constantTemp then ConstTempModel{…} 
else TempFileHistory{…}; 

One inconvenience of the proposed notation is that it 
sometimes leads to redundant formulation. In some 
applications, the default parameter value will equal the 
type constraint.  

 
parameter component Resistor R1{R=100} = 
                      Resistor{R=100}; 

Here, Resistor{R=100} had to occur twice. If this turns 
out to be a frequent case, one may consider adding a new 
keyword itself in order to provide some syntactic 
sugar. 

 
parameter component Resistor R1{R=100} =  
                      itself; 

5. Improved Class Generation 
Having available powerful and well-integrated means for 
class parameterization, we can now provide separate 
means for class generation. To this end, we need to keep 
our eye on two different targets: 

1. Enable the convenient creation of new classes out of 
existing classes. 

2. Prevent the corruption of existing classes. 

The second goal is easily forgotten, but it is equally 
important to the first goal. Again, we explain the new 

language constructs by means of examples and review for 
this purpose the models from section 2.2. 

5.1 The New Role of Redeclared 

We replace the former keyword redeclare by a new 
keyword redeclared. The new keyword is now solely 
implemented for the purpose of class generation. It can 
actually be applied similar to the former keyword. Let us 
therefore review the example of the mechanical impulse 
library where we wanted to exchange the continuous-
system connector with an extended counterpart.  

 
model FixedTranslation  

extends 
Mechanics3D.Parts.FixedTranslation; 

redeclared Interfaces.IFrame_a frame_a; 
redeclared Interfaces.IFrame_b frame_b; 
… 

equation  
… 
frame_a.contact = frame_b.contact; 
frame_a.F + frame_b.F = zeros(3); 
frame_a.T + frame_b.T + 

cross(r,R*frame_b.F) = zeros(3); 
frame_a.Vm  
+ transpose(R)*cross(frame_a.Wm,r) 
= frame_b.Vm; 
frame_a.Wm = frame_b.Wm; 

end FixedTranslation; 

This solution is very similar to the existing methods in 
Modelica, but there are crucial and important differences. 
Most importantly, the elements are not redeclared in 
the modifier of the extension belonging to the existing 
class, but in the public section of the new class.  In this 
way, we prevent the existing class from being corrupted 
and we prohibit an abuse of the keyword redeclared for 
the purpose of class parameterization. For this reason, the 
use of redeclared in modifiers is strictly forbidden. 

Furthermore the redeclaration can be applied to all 
inherited components without restriction. It is not 
necessary (nor desirable) to mark these components as 
replaceable beforehand in the inherited models. Doing so 
would be not even superfluous but even harmful since... 

1. it would require an inappropriate amount of 
foresight.  

2. it is very tempting to add the replaceable 
keyword ex post and thereby to corrupt the original 
models that should not be touched 

3. the replaceable keyword actually introduces an 
unwanted parameterization of the original model. 

Hence the original translation model can be formulated 
just normally without replaceable connectors. 

 
model FixedTranslation  

Interfaces.Frame_a frame_a; 
Interfaces.Frame_b frame_b; 
  … 

end FixedTranslation; 



Also the class requirements that are imposed on 
redeclarations are different. For class parameterization the 
replaced models must have been plug-compatible to the 
constraint or the original model, respectively. This was 
necessary since additional connections could not be 
introduced anymore.  In the case of class generation, it 
would be easy to add a new connection in the new model, 
and hence the only requirement is that the redeclared 
model is a sub-type of the original type. Plug-
compatibility is not requested anymore. 

5.2 The New Role of Redefined 

Another application of class generation is the redefinition 
of whole models, packages, etc. To this end, the keyword 
redefined is provided. When class definitions are inherited 
(for instance by inheriting a package), any definition can 
be redefined. To clarify this, let us review the example of 
the MediaLib. 

 
partial package SingleGasNasa  
  extends PartialPureSubstance{…}; 

 
redefined model BaseProperties{…}    
  extends itself; 
equation  
  … 
end BaseProperties; 
 

end SingleGasNasa; 

In principle, not much has changed on the syntax level. 
Nevertheless, there are again important differences to the 
prior solution. First of all, the original BaseProperties 
model did not need to be marked as replaceable. The 
reasons for this are exactly the same as for redeclared 
components. Correspondingly, the use of redefined is also 
banned from modifiers. 

Second, the use of redefined on class definitions 
imposes different type restrictions than the use of 
redeclared on components. Since class definitions 
might get extended within the inherited package, the 
redefined type must be inheritance-compatible to the 
original type. It is still possible that there are conflicts for 
inheritance since the redefined class may generate a sub-
type that leads to name clashes. However, these type of 
errors can be fairly well reported and it is a rather 
uncommon situation. 

Since, now the proper type restrictions are applied (and 
not the inappropriate plug-compatibility), the redefinition 
of base-classes is enabled. In fact, this can be a powerful 
design tool. Let us consider once more the mechanical 
impulse library of the MultiBondLib: instead of 
redeclaring the connectors in each component, it would be 
far more elegant, to extend the whole package and 
redefine the connector.  Then all components adapt 
automatically and the missing equations can be added to 
each component by providing an extended redefinition of 
itself. 
package Mechanics3D; 

 
  connector Frame  

  Potentials P; 

  flow SI.Force f[3]; 
  flow SI.Torque t[3]; 
end Frame; 
 
connector Frame_a extends Frame; 
 … 
end Frame_a: 
 
model FixedTranslation  
  Interfaces.Frame_a frame_a; 
  Interfaces.Frame_b frame_b; 
  … 
end FixedTranslation; 
 
… 

end Mechanics3D; 
 

package Mechanics3DwithImpulses; 
extends Mechanics3D; 
 
redefined connector Frame extends itself  

    Boolean contact; 
    SI.Velocity Vm[3]; 
    SI.AngularVelocity Wm[3]; 
    flow SI.Impulse F[3]; 
    flow SI.AngularImpulse T[3]; 
  end Frame; 

 
//The extended model Frame_a will automatically adapt and 
does not need to be redefined. 
 
  redefined model FixedTranslation  

//Here the connectors do not need to be  redeclared 
equation 
  … 

    frame_a.contact = frame_b.contact; 
  frame_a.F + frame_b.F = zeros(3); 
  frame_a.T + frame_b.T + 
    cross(r,R*frame_b.F) = zeros(3); 
  frame_a.Vm + (transpose(R)* 
    cross(frame_a.Wm,r))= frame_b.Vm; 
  frame_a.Wm = frame_b.Wm; 
end FixedTranslation; 
… 
 

end Mechanics3DwithImpulses; 

6. Final Review 
Let us quickly review the proposed modifications of the 
language. 

6.1  Simplification of the Language 

The grammar has become simpler and more unified (see 
appendix). The keywords replaceable and 
constrainedby have become obsolete. Non-uniform 
and complicated construction as: redeclare 
replaceable model extends can also be removed 
from the language. The keyword redeclare is replaced 
by redeclared or redefined respectively that have a 
different meaning. These new keywords are also removed 
from the modifiers, which simplifies the grammar.  



6.2 Higher Degree of Expressiveness 

The unification of class parameters and normal 
parameters not only simplifies the grammar and makes 
the language more intuitive to understand. It also 
improves the expressiveness of the language. Now we can 
compute with class parameters just as with normal 
parameters and create all kinds of models. 

The separation of class generation from class 
parameterization helps to protect existing classes from the 
introduction of unwanted parameterization. Since class 
generation is now applicable to all components (but only 
in a new class), less foresight is required and more can be 
done in hindsight without having to modify the original 
models. This separation also helps to impose the correct 
class requirements for each operation. 

6.3 Deficiencies of this proposal 

Syntactically, the introduction of the keyword itself is 
regrettable. Here the former notation was more 
convenient. However, the new grammar enables to 
formulate a component or class parameter without a 
default value and, in this way, to enforce a 
parameterization in an evident manner. This is not 
possible in the current grammar. Also, the keyword 
itself can be reused in the extends-clause and here it 
leads to a more natural and better understandable 
expression. 

Semantically, the new notation almost completely 
covers the expressiveness of the current Modelica. Only 
for the redefinition of classes, there exists no short 
notation.  For instance, if the redefinition of a model 
occurs in a modifier of a replaceable class, then we have a 
problem.  

 
replaceable package Medium =  
  PureSubstance(redeclare model  
    BaseProperties = myProperties 
  ) 

The new language version (maybe rightfully) prohibits 
such ad-hoc class-generations. To this end, we have to 
create a new class and assign it to the model parameter.  
 
partial package newMedium  
  extends PureSubstance; 
  redefined model BaseProperties 
   = myProperties; 
  … 
end newMedium; 
 
package parameter Medium = newMedium; 

Please keep in mind: this is only the case for this specific 
kind of redefinitions. Most of the current redeclarations 
get replaced by parameter assignments and these are 
totally uncritical. Hence, this is a rather uncommon case 
and since such a transformation is better implemented 
manually. To our knowledge, this application does hardly 
occur. 

6.4 Backward Compatibility  

Backward compatibility is major issue since this proposal 
would definitely represent a drastic change of the 
Modelica language. Unfortunately, it is not easy to 
achieve. Our proposal distinguishes class generation from 
class parameterization. This was not done before. Hence, 
one needs to separate what is currently intermixed. It is 
possible to do so for 90% of all occurring cases but there 
remain, inevitably, some cases that cannot be resolved 
automatically. 

6.5 Final Conclusions 

The main two points of this paper are: 

 It is highly meaningful to distinguish class generation 
from class parameterization since entirely different 
motivations are underlying these two concepts. 

 Introducing class expressions (and thereby giving 
classes a first-class status) can drastically simplify the 
grammar while making the language more powerful. 
Class parameterization is only one possible 
application of class expressions. 

Appendix 
These are the resulting grammar changes to the Modelica 
language. Please note, this represents not our exact 
proposal. We provide this just in order to show the 
simplifications and to concretize the conceptual 
explanations of this paper. 

The following keywords are removed from the 
language:  

replaceable  
constrainedby  
redeclare 

The following keywords are introduced into the 
language:  

component  
redeclared  
redefined  
itself 

The following grammar changes are listed according to 
the order of the language specification. New elements are 
underlined, removed elements are scratched. 

 
B 2.2 Class Definition 
 

element: 
 import_clause | 
 extends_clause | 

[ redeclare ] 
[ redeclared ] 
[ final ] 
[ inner ] [ outer ] 
(( class_definition | 
component_clause ) | 
replaceable ( class definition | 
component_clause) 
  [constraining_clause comment])  

  
B 2.3 Extends 
 

extends_clause : 



 extends (name | itself)  
      [ class_modifications ] [annotation] 
 
contraining_clause: 
 constrainedby name 
[class_modification ]  
 
B 2.4 Component Clause 
 

type_prefix: 
[flow | stream] 

 [discrete | (parameter  [par-
specifier]) | constant ] 
 [input | output] 
par_specifier: 
 (component | class | model | record 
| block | connector | type |  

 package | function | operator | 
operator function | operator record) 
 
B 2.5 Modification 
 

modification: 
 class_modification ["=" 
(expression|itself) ] 
 | "=" (expression|itself) 
 | ":=" expression 
 
class modification :   
 "{" element_modification {"," 
element_modification }  "}" 
 
argument_list: 
 argument {“,” argument} 
 
argument : 
 element_modification_or_replaceable 
 element_redeclaration 
 
element_modification_or_replaceable 
 [ each ] [ final ] (element 
modification | element_replaceable) 
 
element_modification: 
 [ each ] [ final ] name [ 
modification ] string_comment 
 
element_redeclaration : 
 redeclare [ each ] [ final ] 
 ( ( class_definition | 
component_clause) | element_replaceable ) 
 
element_replaceable: 
 replaceable (class definition | 
component_clause1)  

[constraining clause ] 
 

component_clause1: 
 type_prefix type_specifier 
component_declaration1 
 
component_declaration1 : 
 declaration comment 
 
B 2.7 Expressions 
 

primary: 
 UNSIGNED_NUMBER 
 | STRING 
 | false | true 

 | class_expression 
 | (der | initial)  
(function_call_args) 
 | component reference 
 | "(" output_expression_list } ")" 
 | "[" expression_list { ";" 
expression_list } "]" 
 | "{" function_arguments "}" 
 | end 
 
class_expression: 
name [class_modification] 
[(function_call_args)] 
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