

3rd International Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools, October, 2010, Oslo, Norway.

Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/047/

EOOLT 2010 website:
http://www.eoolt.org/2010/

Towards Improved Class Parameterization and
Class Generation in Modelica

Dr. Dirk Zimmer
German Aerospace Center, Institute of Robotics and Mechatronics, Germany,

Dirk.Zimmer@dlr.de

Abstract
Class parameterization and class generation enhance the
object-oriented means of Modelica, either by making
them better accessible for the user or more powerful to
apply for the library designer. Nevertheless, the current
solution in Modelica does not properly distinguish
between these two concepts, and hence it does not
represent a fully satisfying solution. This paper presents a
proposal or vision for a partial redesign of the language
by separating class parameterization and class generation.
In this way, the language becomes simpler and yet more
powerful. The derived concepts may serve as guideline
for future considerations of the Modelica language design.

Keywords language design, class-parameterization

1. Introduction
This paper presents the concepts of class parameterization
and class generation for equation-based modeling
languages as Modelica. It is highlighted why these
concepts are important for a modeling language and how
they could be better regarded in the future.

The paper is organized as a proposal for a future design
of Modelica. It is instructive in order to be concise. The
suggestions are concrete in order to be illustrative.
Nevertheless, what finally matters is the abstract idea
behind our concept that could as well be finally realized
in a different form.

To understand the current situation in Modelica [6,8],
the problems of a language designer, and the motivation
behind our proposal, let us review the most important
fundamentals.

1.1 Processing Scheme

The translation of Modelica models into code for
simulation purposes, involves several stages. These are
depicted in Figure 1.

The semantics of the language concern nearly every
part of this processing scheme. For instance, the
causalization of an equation is done in stage 4, whereas
the realization of a model extension concerns stage 2.
Even with the same syntactic elements, a modeler can

formulate expressions that belong to different stages.
An if-branch that depends on a parameter value

corresponds to stage 2. If its condition is, however,
dependent on a variable then it belongs to stage 4 and 5.
In this paper, we are concerned with class
parameterization and class generation. These two aspects
belong to stage 2 of the processing scheme.

Modelica contains language constructs of all these
processing stages in one single layer. This makes the
language very powerful and highly convenient. To some
degree this style results out of the declarative character of
Modelica. It enables the modeler to focus on what he
wants to model rather than thinking about how to create a
computational realization. In this way, a modeler can
achieve his or her goals without being fully aware of the
underlying processing scheme.

Nevertheless, this puts an increasingly higher burden
on the designers of such a language. Whereas the modeler
does not need to know about the processing scheme, a
language designer must have a very detailed knowledge.
He or she is required to foresee all possible combinations
with their potential problems that are introduced by a new
language construct. As a language drifts towards higher
complexity, this becomes a very hard task.

1.2 Structural Type System

The declarative style of Modelica is supported by a
structural type system [1]. This means that the type
results solely out of the structure of a class. Roughly
speaking, type A is a sub-type of (or compatible to) type
B, if all (public) elements of B are declared (by the same
identifier) in A, and these elements are themselves sub-
types of their counterparts in B.

In a structural type-system, the type is therefore
independent from the methods used for its generation, and
hence different lines of implementation may lead to
compatible types. This is a big strength of structural type
systems. Compatible types can have a common ancestor
(mostly a partial model), but it is not required.

With respect to class generation and class
parameterization, two additional definitions of
compatibility must be concerned that impose additional
restrictions on the simple sub-type relationship. Plug
compatibility requires that, in addition to sub-type
compatibility, no further connections are introduced that
must be connected from outside. Plug compatibility is
required when models get exchanged by class
parameterization.

Figure 1: Processing Scheme of a Modelica Translator

Inheritance compatibility means that type A could replace
type B as an ancestor for an arbitrary type C. To this end,
the sub-type requirements are extended to protected
elements. Inheritance compatibility is required for class
generation purposes. The relation between these different
sub-type relations is depicted in Figure 2.

Figure 2. Set relation of different type requirements

1.3 Available Language Constructs

Let us briefly review those language constructs that are to
be revised in the future. The use of all these keywords is
then demonstrated by means of examples in the next
section.

1.3.1 replaceable and redeclare

A modeler can declare a component B of model M as
replaceable. By doing so, this component can be
replaced, either in a possible extension of the model M or
by a modifier that is applied to an instance M.

In order to replace the component B, the keyword
redeclare (redeclare replaceable resp.) has to be
applied. A new component A is then put into the place of
B.

The type of the component A can be further
constrained with the keyword constrainedby. It is
applied at the original declaration that was marked as
replaceable.

1.3.2 Parameters for classes

The keyword replaceable cannot only be applied to the
declaration of components but also to the definition of
models, packages, records, etc. To this end, the term
replaceable model (or package, record, …) has been
introduced.

Such definitions can then be extended by the use of the
term redeclare model or (redeclare replaceable
model resp.). Also the replacement of definitions can be
constrained by the keyword constrainedby.

It is in general not possible to extend from replaceable
model definitions. An exception is enabled by the term
redeclare [replaceable] model extends.

1.3.3 Conditional Declarations

In addition to these tools, there are also conditional
declarations available in Modelica. To this end, a short if-
statement is appended to the normal declaration of a
component. It is, however, not possible to combine
conditional declarations with replaceable components or
with components that are being redeclared.

2. The Important Difference between Class
Generation and Class Parameterization

The presented language elements in Modelica may now
serve two entirely distinct purposes: class
parameterization and class generation. It is very important
to make a proper distinction between these two concepts,
since the lack of this distinction is the root of the current
problems in Modelica. In order to clarify the situation, we
present a representative set of examples for both concepts.

2.1 Examples for Class Parameterization

Class parameterization means that a class itself or a
component is a parameter.

Class parameterization with respect to Modelica does
mostly mean, model parameterization. To this end, a sub-
component is made exchangeable by means of the
parameter menu. Let us review three typical examples of
this process.

2.1.1 Container Model (Wheels and Tires)

The container model is one of the most primitive methods
to achieve class-parameterization. Essentially, it
represents a set of conditionally declared components.
Given a parameter value (mostly an enumeration value),
one of the conditions evaluates to true, whereas all other
components are disabled.

IdealRolling...

RigidWheel1

SlickTyred...

TreadTyred...

DynamicTyr...

DynamicTyr...

ExplDynami...

fram
e_a

Figure 3. Container model for different wheel models

Figure 3 presents a container model that enables
switching between different wheel models. The model
parameterization is done indirectly by transforming a
regular parameter into the conditional declaration of sub-
models.

model MultiLevelWheel
public
 parameter ModLevels level //enumeration
 Interfaces.Frame_a frame_a;
 …

IdealWheel wheel1(...)
 if level == ModLevels.IdealWheel;
RigidWheel wheel2(...)
 if level == ModLevels.RigidWheel;
SlickTyredWheel wheel3(...)
 if level == ModLevels.SlickTyredWheel;
 …

equation
 connect(wheel1.frame_a, frame_a);
 connect(wheel2.frame_a, frame_a);
 connect(wheel3.frame_a, frame_a);
 …
end MultiLevelWheel;

Given the construct of replaceable/redeclare, this
design pattern has actually become redundant. It is,
however still applied. It is better suited if the sub-models
shall not be public but protected. Another application
results, if the standard dropdown list (of the Dymola GUI)
for replaceable components is not the preferred
parameterization since another user interface is
demanded.

2.2 Exchangeable Resistor Model

The standard method of model parameterization is
performed by means of a replaceable model. An electric
circuit may contain a resistor component. If it is declared
as replaceable:

model Circuit1

replaceable Resistor R1(R=100);
…

end Circuit1;

A potential user of this circuit model may now exchange
the resistor
model Test

Circuit1 C(
 redeclare ThermoRes R1(R=100)
);

 …
end Test;

If the circuit contains two resistors, each can be
redeclared separately. Alternatively, the circuit can have a
parameter for the model definition.
model Circuit2

replaceable model R = Resistor(R=100);
R R1;
R R2;
…

end Circuit2

A user can now redefine the model definition:

model Test
Circuit2 C(
 redeclare model R = ThermoRes(R=100)
);
 …

end Test

2.2.1 Media-Exchange

Having parameters for class definitions enables more
advanced modeling techniques. The models of the
Modelica Fluid [4,5] library serve as a good example.
Here each fluid model contains a parameter for a package
definition. Given this package, the model declares now
those package members that it requires.

model TemperatureSensor
 replaceable package Medium =
 Interfaces.PartialMedium;
 Interfaces.FluidPort_in port(
 redeclare package Medium =
 Medium
)

Medium.BaseProperties medium;
 Modelica.Blocks.Interfaces.RealOutput
T(unit="K");

equation

…
port.p = medium.p;
port.h = medium.h;
port.Xi = medium.Xi;
T = medium.T;

end Temperature;

2.3 Examples for Class Generation

Class Generation is a collective term for all those
methods that are used to generate a new class. Most

commonly, the new class is created out of one or more
existing ones.

The most common technique of class-generation in
Modelica is class extension that is represented by the
keyword extends.

Mostly, replaceable and redeclare are used for class
parameterization, but there are also applications for class
generation. The following two examples shall
demonstrate this.

2.3.1 MultiBondLib

The MultiBondLib [11] features various mechanical
libraries based on the bond-graphic modeling
methodology. There is the planar mechanical library and
the 3D-mechanical library. In addition, there is the 3D-
mechanical library that includes the modeling of force-
impulses. This library was derived from its continuous-
system version. To this end, the connector of the classic
mechanical package was made replaceable.

connector Frame

Potentials P;
flow SI.Force f[3];
flow SI.Torque t[3];

end Frame;

model FixedTranslation
replaceable Interfaces.Frame_a frame_a;
replaceable Interfaces.Frame_b frame_b;
…

end FixedTranslation;

The connector of the impulse library was then extended
from its continuous version.
connector IFrame
 extends Mech3D.Interfaces.Frame;

Boolean contact;
SI.Velocity Vm[3];
SI.AngularVelocity Wm[3];
flow SI.Impulse F[3];
flow SI.AngularImpulse T[3];

end IFrame;

Finally, each component of the impulse-library was
inherited from its continuous counterparts, had its
connectors replaced and the required impulse equations
added:
model FixedTranslation
 extends Mech3D.Parts.FixedTranslation(
 redeclare Interfaces.IFrame_a frame_a,

 redeclare Interfaces.IFrame_b frame_b
);

 …
equation
 …
 frame_a.contact = frame_b.contact;
 frame_a.F + frame_b.F = zeros(3);
 frame_a.T + frame_b.T +
 cross(r,R*frame_b.F) = zeros(3);
 frame_a.Vm + (transpose(R) *
 cross(frame_a.Wm,r)) = frame_b.Vm;
 frame_a.Wm = frame_b.Wm;
end FixedTranslation;

Making the connector directly replaceable is not the
preferred solution given the current means of the
language. It would be better to use a model parameter C
(via replaceable model) for the connectors and declare the
connectors by the use of C. At its time of creation,
however, this solution was not available for the
MultiBondLib.

2.3.2 Medium equations in the MediaLib

Another example for class generation can be found in the
Modelica MediaLib. Here, an individual package is
created for each medium. Among other members the
package contains a model BaseProperties that
describes those balance equations that are specific to the
medium (e.g. the ideal gas law).

A new medium may now inherit from an existing
medium package and redefine its BaseProperties
model. In this way a class is generated for each medium:

partial package SingleGasNasa

extends PartialPureSubstance(…)
redeclare model extends BaseProperties(…)

equation
…

 MM = data.MM;
 R = data.R;

 h =h_T(data, T, h_offset);
 u = h - R*T;
 d = p/(R*T);
 state.T = T;
 state.p = p;
end BaseProperties;

2.4 Foresight versus Hindsight

Since both, class parameterization and class generation
are performed during the preprocessing stage in the
translation process, it may be tempting to use one set of
tools for both purposes as is done in Modelica. However,
this turns out to be problematic because of the entirely
distinct motivation behind these two concepts.

Class parameterization is requested by the model
designer to be performed by a user of its library. Thus, it
is performed in foresight since the corresponding
parameterization needs to be declared. Rules for class
parameterization must be rather strict to prohibit abuses
by the user to a meaningful extent.

In contrast, class generation is done in hindsight. It is
performed by the model-designer and requested from a
previous library. Since it is done in hindsight and mostly
performed by experts, rules for class generation should
not be prohibitive. It is not possible to foresee which
models might be extended; so a potential keyword
extendable does not make much sense. It is, however,
also not foreseeable which elements might be
redeclared; so the keyword replaceable is
inappropriate. Prohibitive measures will tend rather to
corrupt existing classes than to prevent the faulty creation
of new classes.

2.5 Different Aspects of the Type System

Another vital difference between class parameterization
and class generation is highlighted by the criteria of the
type system that are relevant for each concept.

A proper class parameterization requires that the new
type A is compatible to the original type B. Obviously A
must be a sub-type of B. An even more strict requirement
is that it needs to be plug-compatible since it is not
possible (and certainly not convenient) to introduce new
connections into a parameterized model.

Plug-compatibility is of no relevance for class
generation. When a new class is generated, new
connections can also be introduced in an effortless way.
Instead, it is important that the new type is inheritance-
compatible since potential extensions of a redefined
model ought to remain valid.

Evidently, separate aspects of the type system need to
be concerned for both tasks.

2.6 Current Deficiencies

The confusion of class parameterization and class
generation involves a number of disadvantages:

 Non-uniform parameterization: The syntax that has
been chosen for class parameterization purposes is
different to those of normal parameters. One
unfortunate consequence of this decision is that class

parameterization becomes inaccessible for normal
parameter computations. For instance, it is not
possible to combine if-statements with redeclarations.
This means that redeclarations cannot be coupled to
conditions.

 Inappropriate sub-elements: Since model parameters
are not properly declared as parameters but more as a
replaceable sub-element this leads to inappropriate
structures. For instance, models that contain sub-
packages. It makes sense that a model cannot contain
a package, but it makes no sense that a model can
contain a package just because it is replaceable.

 Prohibitive class generation: Since potential
redeclarations and redefinitions must be marked as
replaceable in advance, the options for class
generation are unnecessarily limited. Often this leads
to an ex post modification of the original library in
order to enable the desired class generation

 Unwanted parameterization: Since potential
redeclarations or definitions for the purpose of class
generation need to be marked as replaceable an
unwanted parameterization is introduced into the
models. In order to avoid this, the replaceable objects
are often moved to the protected section.

 Unnecessary restriction: To extend from replaceable
model definitions is currently prohibited in Modelica
(with one exception). This restriction will turn out to
be unnecessary.

 Overelaborated syntax: The current syntax is simply
more complicated than actually necessary and can be
simplified.

3. Design Decisions
For the partial redesign of Modelica, we establish the
following guidelines:

 Separate class parameterization and class generation

We want to clearly separate class parameterization
from class generation. In this way, the specific needs
and motivation of each concept can be optimally
taken into account.

 Give classes first class status on the parameter level

We want to treat class parameters just as any normal
parameter. There is no reason why parameters should
be restricted to base-types or quasi base-types. This
will simplify and unify the syntax. Furthermore, class
parameterization can be integrated in the normal
computation process for parameters.

 Enable non-prohibitive class generation

Class generation shall be performed by a special
subset of keywords. It shall be designed in a way that
it is not hampered or prohibited by means that require
foresight. Maximum freedom should be given to the
modeler in order to create new classes. On the other
hand side, existing classes shall be protected from
corruption.

 Unify and simplify the language

The complete language should be simpler and more
powerful after the revision. It should also be more
intuitive to understand and to learn.

4. Improved Class Parameterization
In this section, we will propose new language constructs
for class parameterization. In order to show their potential
applications and highlight their advantages, we will
review the examples of chapter 2.1.

4.1 Unification of Expression
In a first, preparatory step, we integrate the expression

of classes into normal statements. To this end, we have to
slightly change the modifier syntax of an expression: the
modification is now applied in curly brackets instead of
round parentheses.

This change has been implemented in order to make a
class-definition with its modifier distinguishable from a
function-call with its argument-list. In this way you know
that foo(x=a) represents a function call but
bar{x=a} represents a class-definition with its modifier.
The term baz{p=b}(a) represents then consequently a
parameterized function call.

Since classes can be used in expressions, the language
power is increased, e.g., by using classes in if-clauses or
as arrays:

// The result of this if-clause is a class
if expr then foo2{x2=b} else foo2{x2=c};

 // An array of 4 classes
 foo2[4]
 foo2{x2=a}[4]

One might hesitate, to integrate class-expressions as basic
part of normal expressions, since this gives classes a first-
class status [2,3] and opens up the grammar quite
substantially. It might seem smarter (and easier to
achieve) to form two separate kinds of expressions that
are distinguished on the top level: normal expressions and
class expressions. However, this is misleading for the
following reasons.

Firstly, normal expressions and class expressions can
both start with a name. This means that an undefined
number of look-up tokens are required to distinguish these
two kinds of expressions. Practically this means that an
extra keyword is needed, but this leads to an ugly and
unpractical syntax. Also, many syntax elements would
need to be doubled and still two kinds of grammars would
be required. Hence such a solution would not be fully
generic.

A1.B2.C3.Model{…} class expression
A1.B2.C3.Function(…) normal expression

Secondly, the integration of class-expressions into normal
expressions provides an important generalization for
future language extensions. Whereas many syntactic
formulations such as foo{x2=3} + foo{x2=2} are
semantically still invalid for this proposal, this may
change in future revisions. Let us envision a future

version of Modelica (5 or 6) that enables anonymous
declarations of models or records. Then, the former
statement foo{x2=3} + foo{x2=2} may become valid
if, for instance, foo is a record and overloads the +
operator. Hence the integration of class-expressions opens
up a number of fruitful opportunities for future language
revisions. It is notable that the first-class status of higher-
level language constructs is absolutely common in
contemporary programming languages. Even a few
equation-based modeling languages (Sol [9,10], Hydra
[7], Modeling Kernel Language [2]) have explored this
important topic.

In this proposal, only the following uses of class-
expressions shall be semantically supported. All other
uses yield error messages.

 Pure class expressions: foo{x=y}

 Class expressions in if-statements: if a then
foo{x=y} else bar{x=y}

 Array-lists of class-expressions: {foo{x=y},
bar{x=y}, …}

4.2 Say It As You Want It: Treat Component
Parameters as Normal Parameters

If a component (let us suppose: a resistor) shall be a
parameter of a model, it is the most natural thing, just to
write it down as a normal parameter. Instead of the
awkward formulation:

model Circuit1

replaceable ThermoRes R1(k=0.5)
constrainedby Resistor(R=100);
…

end Circuit1

simply write it as a component parameter:

model Circuit1
parameter component Resistor R1{R=100} =

ThermoRes{k=0.5}
…

end Circuit1

A user of this circuit model may now give a new
parameter value and thereby replace the prior model.

model Test

Circuit1 C{R1 = ThermoRes{k=1.2}};
…

end Test

The type of the parameter hereby represents the constraint
type for the parameterized model. Naturally one can apply
modifiers also on the constraint type, and of course the
new resistor type must be plug-compatible to this
constraint type.

The keyword component is necessary in order to
avoid potential ambiguities. These originate from the fact
that the formulation of a component parameter is a
language construct that performs two tasks at the same
time. One, it enables direct class-parameterization of a
component. Two, it declares a component that invokes an
instance.

Hence it must be clarified if the = operator assigns a
value
parameter Real r = 1;

or a component (sub-model)
parameter component Resistor R = ThermoRes;

In these cases, the meaning is clear, but when records are
concerned both interpretations of the assignment are
meaningful:

//value assignment
parameter Complex c1 = Complex.j();

//component assignment
parameter component Complex c2 =
 Quaternion;

In fact, the keyword does not just change the
interpretation of the assignment, but also if the values of
the instance shall be constant or not. In the example
above, c1 is constant-valued but c2 may express variable
values.

4.3 Say It As Want You Want It: Treat Class
Parameters as Normal Parameters

The very same can be done for parameters that identify
class definitions, such as model parameters or package
parameters. Again, the best solution is to simply write it
down as one wants it to have. So, instead of writing:

replaceable model R1 = Resistor{R=100}
 constrainedby Resistor;

you can simply turn the model into a parameter:

parameter model Resistor R1 =
 Resistor{R=100};

Since such parameters will ultimately always be used for
class parameterization, plug-compatibility shall also be
required here. In this way, the temperature sensor of
section 2.1 could be formulated as follows:

model TemperatureSensor
 parameter package
 Interfaces.PartialMedium Medium;

 Interfaces.FluidPort_in port{
 Medium = Medium}

Medium.BaseProperties medium;
Blocks.Interfaces.RealOutput T{unit="K"};

equation
…

end Temperature;

4.4 Improved Computational Power

One obvious advantage is that the language has been
unified. Now, the same notation is used for all kinds of
parameters. It has also become simpler. The keywords
replaceable, redeclare and constrainedby are not
needed any more.

Another major advantage is that class parameters can
be computed with as any other parameter. In this way,

conditional declarations become redundant in many cases.
Let us review the example of the container model. Here
we had to transform an enumeration into a class. This was
done by number of conditional declarations. Now, we
have the option to use an array of model parameters for
this purpose.
model MultiLevelWheel
public

parameter TModLevels level //enumeration
Interfaces.Frame_a frame_a;
…

protected
final parameter model BaseWheel
 wheelModels[7]= { IdealWheel {…},
 RigidWheel{…},
 SlickTyredWheel{…},
 … };

 final parameter component BaseWheel wheel
 = wheelModels[level];

equation
 connect(wheel.frame_a, frame_a);
end MultiLevelWheel;

Here we can organize different model parameters in an
array. In the same way, this could be done in a record. It
is important to notice that class parameters become
accessible to all kinds of computations. Especially useful
is the conditional evaluation:

parameter Boolean constantTemp = true;
final parameter BaseTempModel
ambientTemperature =

if constantTemp then ConstTempModel{…}
else TempFileHistory{…};

One inconvenience of the proposed notation is that it
sometimes leads to redundant formulation. In some
applications, the default parameter value will equal the
type constraint.

parameter component Resistor R1{R=100} =
 Resistor{R=100};

Here, Resistor{R=100} had to occur twice. If this turns
out to be a frequent case, one may consider adding a new
keyword itself in order to provide some syntactic
sugar.

parameter component Resistor R1{R=100} =
 itself;

5. Improved Class Generation
Having available powerful and well-integrated means for
class parameterization, we can now provide separate
means for class generation. To this end, we need to keep
our eye on two different targets:

1. Enable the convenient creation of new classes out of
existing classes.

2. Prevent the corruption of existing classes.

The second goal is easily forgotten, but it is equally
important to the first goal. Again, we explain the new

language constructs by means of examples and review for
this purpose the models from section 2.2.

5.1 The New Role of Redeclared

We replace the former keyword redeclare by a new
keyword redeclared. The new keyword is now solely
implemented for the purpose of class generation. It can
actually be applied similar to the former keyword. Let us
therefore review the example of the mechanical impulse
library where we wanted to exchange the continuous-
system connector with an extended counterpart.

model FixedTranslation

extends
Mechanics3D.Parts.FixedTranslation;

redeclared Interfaces.IFrame_a frame_a;
redeclared Interfaces.IFrame_b frame_b;
…

equation
…
frame_a.contact = frame_b.contact;
frame_a.F + frame_b.F = zeros(3);
frame_a.T + frame_b.T +

cross(r,R*frame_b.F) = zeros(3);
frame_a.Vm
+ transpose(R)*cross(frame_a.Wm,r)
= frame_b.Vm;
frame_a.Wm = frame_b.Wm;

end FixedTranslation;

This solution is very similar to the existing methods in
Modelica, but there are crucial and important differences.
Most importantly, the elements are not redeclared in
the modifier of the extension belonging to the existing
class, but in the public section of the new class. In this
way, we prevent the existing class from being corrupted
and we prohibit an abuse of the keyword redeclared for
the purpose of class parameterization. For this reason, the
use of redeclared in modifiers is strictly forbidden.

Furthermore the redeclaration can be applied to all
inherited components without restriction. It is not
necessary (nor desirable) to mark these components as
replaceable beforehand in the inherited models. Doing so
would be not even superfluous but even harmful since...

1. it would require an inappropriate amount of
foresight.

2. it is very tempting to add the replaceable
keyword ex post and thereby to corrupt the original
models that should not be touched

3. the replaceable keyword actually introduces an
unwanted parameterization of the original model.

Hence the original translation model can be formulated
just normally without replaceable connectors.

model FixedTranslation

Interfaces.Frame_a frame_a;
Interfaces.Frame_b frame_b;
 …

end FixedTranslation;

Also the class requirements that are imposed on
redeclarations are different. For class parameterization the
replaced models must have been plug-compatible to the
constraint or the original model, respectively. This was
necessary since additional connections could not be
introduced anymore. In the case of class generation, it
would be easy to add a new connection in the new model,
and hence the only requirement is that the redeclared
model is a sub-type of the original type. Plug-
compatibility is not requested anymore.

5.2 The New Role of Redefined

Another application of class generation is the redefinition
of whole models, packages, etc. To this end, the keyword
redefined is provided. When class definitions are inherited
(for instance by inheriting a package), any definition can
be redefined. To clarify this, let us review the example of
the MediaLib.

partial package SingleGasNasa
 extends PartialPureSubstance{…};

redefined model BaseProperties{…}
 extends itself;
equation
 …
end BaseProperties;

end SingleGasNasa;

In principle, not much has changed on the syntax level.
Nevertheless, there are again important differences to the
prior solution. First of all, the original BaseProperties
model did not need to be marked as replaceable. The
reasons for this are exactly the same as for redeclared
components. Correspondingly, the use of redefined is also
banned from modifiers.

Second, the use of redefined on class definitions
imposes different type restrictions than the use of
redeclared on components. Since class definitions
might get extended within the inherited package, the
redefined type must be inheritance-compatible to the
original type. It is still possible that there are conflicts for
inheritance since the redefined class may generate a sub-
type that leads to name clashes. However, these type of
errors can be fairly well reported and it is a rather
uncommon situation.

Since, now the proper type restrictions are applied (and
not the inappropriate plug-compatibility), the redefinition
of base-classes is enabled. In fact, this can be a powerful
design tool. Let us consider once more the mechanical
impulse library of the MultiBondLib: instead of
redeclaring the connectors in each component, it would be
far more elegant, to extend the whole package and
redefine the connector. Then all components adapt
automatically and the missing equations can be added to
each component by providing an extended redefinition of
itself.
package Mechanics3D;

 connector Frame

 Potentials P;

 flow SI.Force f[3];
 flow SI.Torque t[3];
end Frame;

connector Frame_a extends Frame;
 …
end Frame_a:

model FixedTranslation
 Interfaces.Frame_a frame_a;
 Interfaces.Frame_b frame_b;
 …
end FixedTranslation;

…

end Mechanics3D;

package Mechanics3DwithImpulses;
extends Mechanics3D;

redefined connector Frame extends itself

 Boolean contact;
 SI.Velocity Vm[3];
 SI.AngularVelocity Wm[3];
 flow SI.Impulse F[3];
 flow SI.AngularImpulse T[3];
 end Frame;

//The extended model Frame_a will automatically adapt and
does not need to be redefined.

 redefined model FixedTranslation

//Here the connectors do not need to be redeclared
equation
 …

 frame_a.contact = frame_b.contact;
 frame_a.F + frame_b.F = zeros(3);
 frame_a.T + frame_b.T +
 cross(r,R*frame_b.F) = zeros(3);
 frame_a.Vm + (transpose(R)*
 cross(frame_a.Wm,r))= frame_b.Vm;
 frame_a.Wm = frame_b.Wm;
end FixedTranslation;
…

end Mechanics3DwithImpulses;

6. Final Review
Let us quickly review the proposed modifications of the
language.

6.1 Simplification of the Language

The grammar has become simpler and more unified (see
appendix). The keywords replaceable and
constrainedby have become obsolete. Non-uniform
and complicated construction as: redeclare
replaceable model extends can also be removed
from the language. The keyword redeclare is replaced
by redeclared or redefined respectively that have a
different meaning. These new keywords are also removed
from the modifiers, which simplifies the grammar.

6.2 Higher Degree of Expressiveness

The unification of class parameters and normal
parameters not only simplifies the grammar and makes
the language more intuitive to understand. It also
improves the expressiveness of the language. Now we can
compute with class parameters just as with normal
parameters and create all kinds of models.

The separation of class generation from class
parameterization helps to protect existing classes from the
introduction of unwanted parameterization. Since class
generation is now applicable to all components (but only
in a new class), less foresight is required and more can be
done in hindsight without having to modify the original
models. This separation also helps to impose the correct
class requirements for each operation.

6.3 Deficiencies of this proposal

Syntactically, the introduction of the keyword itself is
regrettable. Here the former notation was more
convenient. However, the new grammar enables to
formulate a component or class parameter without a
default value and, in this way, to enforce a
parameterization in an evident manner. This is not
possible in the current grammar. Also, the keyword
itself can be reused in the extends-clause and here it
leads to a more natural and better understandable
expression.

Semantically, the new notation almost completely
covers the expressiveness of the current Modelica. Only
for the redefinition of classes, there exists no short
notation. For instance, if the redefinition of a model
occurs in a modifier of a replaceable class, then we have a
problem.

replaceable package Medium =
 PureSubstance(redeclare model
 BaseProperties = myProperties
)

The new language version (maybe rightfully) prohibits
such ad-hoc class-generations. To this end, we have to
create a new class and assign it to the model parameter.

partial package newMedium
 extends PureSubstance;
 redefined model BaseProperties
 = myProperties;
 …
end newMedium;

package parameter Medium = newMedium;

Please keep in mind: this is only the case for this specific
kind of redefinitions. Most of the current redeclarations
get replaced by parameter assignments and these are
totally uncritical. Hence, this is a rather uncommon case
and since such a transformation is better implemented
manually. To our knowledge, this application does hardly
occur.

6.4 Backward Compatibility

Backward compatibility is major issue since this proposal
would definitely represent a drastic change of the
Modelica language. Unfortunately, it is not easy to
achieve. Our proposal distinguishes class generation from
class parameterization. This was not done before. Hence,
one needs to separate what is currently intermixed. It is
possible to do so for 90% of all occurring cases but there
remain, inevitably, some cases that cannot be resolved
automatically.

6.5 Final Conclusions

The main two points of this paper are:

 It is highly meaningful to distinguish class generation
from class parameterization since entirely different
motivations are underlying these two concepts.

 Introducing class expressions (and thereby giving
classes a first-class status) can drastically simplify the
grammar while making the language more powerful.
Class parameterization is only one possible
application of class expressions.

Appendix
These are the resulting grammar changes to the Modelica
language. Please note, this represents not our exact
proposal. We provide this just in order to show the
simplifications and to concretize the conceptual
explanations of this paper.

The following keywords are removed from the
language:

replaceable
constrainedby
redeclare

The following keywords are introduced into the
language:

component
redeclared
redefined
itself

The following grammar changes are listed according to
the order of the language specification. New elements are
underlined, removed elements are scratched.

B 2.2 Class Definition

element:
 import_clause |
 extends_clause |

[redeclare]
[redeclared]
[final]
[inner] [outer]
((class_definition |
component_clause) |
replaceable (class definition |
component_clause)
 [constraining_clause comment])

B 2.3 Extends

extends_clause :

 extends (name | itself)
 [class_modifications] [annotation]

contraining_clause:
 constrainedby name
[class_modification]

B 2.4 Component Clause

type_prefix:
[flow | stream]

 [discrete | (parameter [par-
specifier]) | constant]
 [input | output]
par_specifier:
 (component | class | model | record
| block | connector | type |

 package | function | operator |
operator function | operator record)

B 2.5 Modification

modification:
 class_modification ["="
(expression|itself)]
 | "=" (expression|itself)
 | ":=" expression

class modification :
 "{" element_modification {","
element_modification } "}"

argument_list:
 argument {“,” argument}

argument :
 element_modification_or_replaceable
 element_redeclaration

element_modification_or_replaceable
 [each] [final] (element
modification | element_replaceable)

element_modification:
 [each] [final] name [
modification] string_comment

element_redeclaration :
 redeclare [each] [final]
 ((class_definition |
component_clause) | element_replaceable)

element_replaceable:
 replaceable (class definition |
component_clause1)

[constraining clause]

component_clause1:
 type_prefix type_specifier
component_declaration1

component_declaration1 :
 declaration comment

B 2.7 Expressions

primary:
 UNSIGNED_NUMBER
 | STRING
 | false | true

 | class_expression
 | (der | initial)
(function_call_args)
 | component reference
 | "(" output_expression_list } ")"
 | "[" expression_list { ";"
expression_list } "]"
 | "{" function_arguments "}"
 | end

class_expression:
name [class_modification]
[(function_call_args)]

Acknowledgements
I’d like to thank Martin Otter for the enjoyable and
fruitful discussions on this topic and for further
suggestions. I also like to thank Hans Olsson for further
critical remarks.

References
[1] David Broman, P. Fritzson, S. Furic. Types in the Modelica

Language. Proceedings of the Fifth International Modelica
Conference, Vienna, Austria Vol. 1, 303-315, 2006.

[2] David Broman and Peter Fritzson Higher-Order Acausal
Models Proceedings of the 2nd International Workshop on
Equation-Based Object-Oriented Languages and Tools
(EOOLT), Paphos, Cyprus, 2008.

[3] Rod Burstall, Christopher Strachey. Understanding
Programming Languages. Higher-Order and Symbolic
Computation 13:52, 2000.

[4] Hilding Elmquist, H. Tummescheit, Martin Otter. Object-
Oriented Modeling of Thermo-Fluid Systems. Proceedings
of the 3rd Modelica Conference, pp 269-286, 2003.

[5] Rüdiger Franke, F. Casella, M. Otter, M. Sielemann, S.E.
Mattson, H. Olsson, H. Elmquist. An Extension of
Modelica for Device-Oriented Modeling of Convective
Transport Phenomena. Proc. 7th International Modelica
Conference, Como, Italy, 2009.

[6] Peter Fritzson. Principles of Object-oriented Modeling and
Simulation with Modelica 2.1. John Wiley & Sons, 897p.
2004

[7] George Giorgidze and Henrik Nilsson. Higher-Order Non-
Causal Modelling and Simulation of Structurally Dynamic
Systems. In: Proceedings of the 7th International Modelica
Conference, pp. 208 - 218, Como, Italy, 2009.

[8] Modelica® - A Unified Object-Oriented Language for
Physical Systems Modeling. Language Specification,
Version 3.2, www.modelica.org.

[9] Dirk Zimmer. Equation-Based Modeling of Variable-
Structure Systems. PhD-Dissertation, ETH Zurich, 2010.

[10] Dirk Zimmer. Introducing Sol: A General Methodology
for Equation-Based Modeling of Variable-Structure
Systems In: Proc. 6th International Modelica Conference,
Bielefeld, Germany, Vol.1, 47-56, 2008.

[11] Dirk Zimmer and F.E. Cellier, The Modelica Multi-bond
Graph Library. In: Simulation News Europe, Volume 17,
No. 3/4, pp. 5-13, 2007.

