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Fig. 7. Planning results for a simulated ball trajectory. For each catch behavior the first row shows the resulting catch configuration g, and the second

row the joints velocity ramps ¢;(t). For “latest” mode the robot catches the ball later (7. jaest = 1.0s) on the ball trajectory and has therefore to move much
faster and further, than in “soft” (fc sof¢ = 0.94s) and “cool” (fc ool = 0.33s and £z = 0.94s) mode. The catch configurations for “soft” and “cool” mode are
almost the same, but the catch times differ significantly. The smoothest velocity ramps are achieved in “soft” mode, whereas the other two modes reach

the acceleration and velocity limits in some joints.

becomes anti parallel to é,(q). The equality constraints can
then be written as

zr(q) = x5(1),
(PB((LI) = 07
Ug(gq,t) = 0.

The inequality constraints take care, that the solution
(qc,t.) stays inside the feasible part of the solution space
and are defined as follows.

o joint angle limits:

Qmin,i g qi S Qmaxﬂ‘, i=1...N

catch time limits, with fax c = 1.8s for our setup:

0 <t <tmaxe

minimal time limits, which avoid infeasible ramps, i.e.
ramps which need a a@ > amax Or joint velocities @ >
Dmax:

tztmin,i(Qi): i=1..

with #min; as defined in Sec. IV-B.1.

work cell limits, where d(x, W) is the distance between
a point  and one of the Ny = 8 workcell objects W as
defined in Fig. 6:

.N,

d(IUR(q),Wk)>O, kZlNW

In sum, there are N, =5 equality and N, =2N +2+N+
8 = 31 inequality constraints.

C. Simulation Results

To visualize the differences in the three catch behaviors,
for each mode the planner was run for the very same simu-
lated ball trajectory and the very same start configuration go
as shown in Fig. 2. The catch behavior differs significantly
and is discussed in Fig. 7.
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Fig. 8. First row shows the hand grasping the ball for a typical real catch

(At = 40ms). According to the catch frame the ball approaches the index
and the middle finger. At the third image of the sequence the ball is already
caged but still moving. Note the fast motion of the thumb and the ring
finger to block the flight channel. In the last image the stable grasp of the
ball is observed. The second and third row show plots of the velocities and
joint torques of the thumb (for the very same throw as the “soft” mode
throw in Fig. 9). The impact at time 7. = 0.63 can be clearly seen as it
is accompanied by a peak in velocity and impact torques that appear at
the joints. The large initial peak is due to the impact while the following
vibrations are also due to the short vibration phase of the arm that induce
inertial forces in the fingers. In the stable grasp phase the thumb torques
become very small indicating that the index and the ring finger fix the ball
in the hand.
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Fig. 10. Image sequence (from upper left to lower right) for “latest mode catching
and ¢ & f¢ jaesc +20ms = 0.72s for the last image.
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9.  Experimental results for “soft” and
“latest” mode catch behavior. For two al-
most similar ball trajectories (thrown by a
human) each column depicts first the final
catch configuration and then the plots of
the commanded ¢q;(f) and measured g;(r)
joint velocity ramps and the measured joint
torques. The catch times are 7 5o, = 0.63s
and 7 jaest = 0.70s.

A noticeable difference to the simulation
results are the kinks in the commanded
velocity ramps. These are due to the errors
in the ball trajectory prediction: the kinks
occur at the times, when the prediction (and
hence the prediction error) jumps (compare
Fig. 3 for the “soft” mode throw; note, that
the time delay of 90ms between camera
shutter time and the robot reacts to this new
measurement has been compensated for; so
a prediction at time ¢ in Fig. 3 leads to robot
reaction at the same time ¢ in Fig. 9).

The executed velocity ramps follow very
precisely the commanded ramps, except for
a little contouring error. Even the torques
roughly resemble the ideally expectable ac-
celeration step functions, however super-
posed with noise and dynamical and gravi-
tational forces the planner does not account
for. This justifies our assumptions “kinemat-
ically planning” and “trapezoidal velocity
ramps”. Also the timing is very precise:
the impact of the ball is clearly visible
in the torque signals and happens at the
commanded catch time.

Fig. 11. Consecutive catch configurations for a continuous catch sequence without moving back to a start configuration before the next ball is thrown
(“soft” mode).



V. EXPERIMENTS

In Fig. 9 we show experimental results for the “soft”
and “latest” catch modes recorded for two similar (as fas
as possible for the human thrower) throws. The “cool”
mode is not shown, because, as discussed in Sec. IV-C, the
catch configuration would be almost the same as for the
“soft” mode and the distinguishing property, that the catch
configuration is reached early and then the robot stays still
while waiting for the ball to arrive, is corrupted due to the
ever changing predictions of the ball trajectory because of
tracking errors in the vision system 3.

For the “latest” mode Fig. 10 (same throw as in Fig. 9)
shows an image sequence of the catch movement and Fig. 8
a closeup of the hand while grasping the ball.

To get an impression of the wide range of feasible catch
configurations, in Fig 11 a sequence of consecutive catch
configurations for the “soft” mode is shown, where, other
than usual, the robot did not move back to its start config-
uration before a new throw is made, but uses the last catch
configuration as its new start configuration, i.e. qO"Jrl =q".
This justifies our third assumption, the collision avoidance
heuristics.

The catch success rate (number balls caught versus the
number of balls thrown into the feasible catch spaces) is
> 80% for “soft* and “latest” mode, where the main source
of failures is the vision system with its prediction errors and
lost ball tracks. Additional results are contained in the the
video attachment to this paper.

VI. CONCLUSION

Besides being an attraction in demos, in the first place ball
catching is, due to its dynamic nature, an excellent testbed
for robotic key skills and their tight interaction under hard
timing constraints, where even the robotic nonspecialist can
easily judge the performance of the system.

In our system currently the visual ball tracking is the
limiting factor for the catch rate, whereas the mechanics and
control of the arm and especially of the hand work highly
reliable in grasping the ball. Also, the unified view onto
the planning problem by using online kinematically realtime
optimization proves — besides some assumptions — to gen-
erate movements which operate near the performance limits
(speed and acceleration) without damaging the mechanics
and can take fully advantage of the redundancy in the prob-
lem *. Moreover, the chosen approach allows to intuitively
formulate objective functions to determine the desired catch
behavior. Finally, the system architecture permits a tight
interplay of the modules running in parallel on distributed
computing resources under hard realtime constraints.

Currently we are substantially extending our methods to
bring ball catching to our mobile humanoid robot “Rollin’
Justin” [21]. This poses, mainly due to the much larger
number of degrees of freedom (22 DOF including the mobile

3Hence, the robot can not stay still at all until the catch time !

4The robot has 7 DOF, but only 4 DOF are determined, because the
orientation of the catch frame around the z-axis and the catch time, when
to catch the ball on its trajectory, are arbitrary

base) with much more complex dynamical couplings, a
number of new, interesting challenges for all components
of the system.
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