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Abstract. Within the project EUCAARI (European Inte-
grated project on Aerosol Cloud Climate and Air Quality
interactions), atmospheric nucleation was studied by (i) de-
veloping and testing new air ion and cluster spectrometers,
(ii) conducting homogeneous nucleation experiments for sul-
phate and organic systems in the laboratory, (iii) investigat-
ing atmospheric nucleation mechanism under field condi-
tions, and (iv) applying new theoretical and modelling tools
for data interpretation and development of parameterisations.
The current paper provides a synthesis of the obtained results
and identifies the remaining major knowledge gaps related
to atmospheric nucleation. The most important technical
achievement of the project was the development of new in-
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struments for measuring sub-3 nm particle populations, along
with the extensive application of these instruments in both
the laboratory and the field. All the results obtained during
EUCAARI indicate that sulphuric acid plays a central role
in atmospheric nucleation. However, also vapours other than
sulphuric acid are needed to explain the nucleation and the
subsequent growth processes, at least in continental bound-
ary layers. Candidate vapours in this respect are some or-
ganic compounds, ammonia, and especially amines. Both
our field and laboratory data demonstrate that the nucleation
rate scales to the first or second power of the nucleating
vapour concentration(s). This agrees with the few earlier
field observations, but is in stark contrast with classical ther-
modynamic nucleation theories. The average formation rates
of 2-nm particles were found to vary by almost two orders of
magnitude between the different EUCAARI sites, whereas
the formation rates of charged 2-nm particles varied very
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little between the sites. Overall, our observations are indica-
tive of frequent, yet moderate, ion-induced nucleation usu-
ally outweighed by much stronger neutral nucleation events
in the continental lower troposphere. The most concrete out-
come of the EUCAARI nucleation studies are the new semi-
empirical nucleation rate parameterizations based on field
observations, along with updated aerosol formation param-
eterizations.

1 Introduction

The recent decade of atmospheric measurements demon-
strated nucleation to be a frequent phenomenon in the con-
tinental boundary layer, as well as in the free troposphere
(Kulmala et al., 2004; Kulmala and Kerminen 2008, and ref-
erences therein). Direct observational evidence was further
received that particles nucleated in the atmosphere are able to
grow into cloud condensation nuclei (CCN) sizes (O’Dowd,
2001; Lihavainen et al., 2003; Kuwata et al., 2005; Laak-
sonen et al., 2005; Whitehead et al., 2009; Wiedensohler et
al., 2009) and ultimately to form cloud droplets (Kerminen et
al., 2005). Model simulations suggest that nucleation is very
likely the dominant source of the particle number concentra-
tion in the global atmosphere (Spracklen et al., 2006; Yu and
Luo, 2009), and that it is a significant contributor to global
CCN concentrations (Spracklen et al., 2008; Merikanto et
al., 2009; Pierce and Adams, 2009; Yu and Luo, 2009) and
cloud droplet number concentrations (Makkonen et al., 2009;
Wang and Penner, 2009; Kazil et al., 2010).

In spite of its evident importance in the global aerosol sys-
tem, climatic and other influences of atmospheric nucleation
have turned out to be very difficult to quantify. Several rea-
sons for this can be identified. First of all, our inability to
measure neutral sub-3 nm diameter particles, until very re-
cently, has hampered the interpretation of both field and lab-
oratory experiments (e.g., Sipilä et al., 2008, 2009, 2010).
Second, beside sulphuric acid, it is still not known which
vapours take part in atmospheric nucleation and to which ex-
tent (e.g., Smith et al., 2008; Claeys et al., 2009). Third,
the role of ions in atmospheric nucleation has remained am-
biguous (e.g., Iida et al., 2006, Kazil et al., 2008; Yu and
Turco, 2008; Yu, 2010). The lack of a proper mechanistic
understanding of atmospheric nucleation has made it diffi-
cult to develop reliable aerosol formation parameterisations
for large-scale modelling frameworks – the ultimate tools to
address the role of nucleation in climate and air quality is-
sues.

Due to the reasons highlighted above, nucleation studies
were given a high priority in the ongoing project EUCAARI
(European Integrated project on Aerosol Cloud Climate and
Air Quality interactions; Kulmala et al., 2009). The overall
goal of these studies was to produce parameterised represen-
tations of nucleation processes for sulphuric acid-ammonia-

water, organic and iodine oxide systems based on combined
information from nucleation theories, modelling and experi-
mental studies, to be used in regional and global scale mod-
els. The problem was approached by (i) developing and test-
ing new ion and cluster spectrometers, (ii) conducting ho-
mogeneous nucleation experiments for sulphate and organic
systems in the laboratory, (iii) investigating atmospheric nu-
cleation mechanism under field conditions, and (iv) applying
new theoretical and modelling tools for data interpretation
and development of parameterisations. In the following sec-
tions we will summarize our main results from nucleation
studies conducted within the EUCAARI project, after which
a brief scientific synthesis with concluding remarks will be
presented.

2 Development of instrumentation

The main emphasis in the instrumental development within
EUCAARI was put on the detection of sub-3 nm neutral par-
ticles/clusters. For this purpose, an entirely new air ion spec-
trometer was designed, built, tested and calibrated. Major de-
velopments were also achieved with regard of measurement
capabilities and application of various condensation parti-
cle counters, and a new way of applying the mobility size
spectrometer technique for obtaining information about ion-
induced nucleation was introduced. Finally, we were able to
measure the chemical composition of atmospheric ions with
high-resolution mass spectrometric methods.

2.1 Neutral cluster and Air Ion Spectrometer (NAIS)

During EUCAARI, a new prototype ion spectrometer,
termed NAIS (Neutral cluster and Air Ion Spectrometer, Kul-
mala et al., 2007a; Manninen et al., 2009a) was developed.
The NAIS builds on the Air Ion Spectrometer (AIS, Mirme
et al., 2007), following the principle of multi-channel paral-
lel electrical aerosol spectrometry. The NAIS is able to mea-
sure the concentrations and size distributions of both neutral
and charged particles in 21 size fractions (channels). The
mobility range of the NAIS is 3.2–0.0013 cm2 V−1 s−1, cor-
responding to a mobility diameter (Millikan-Fuchs equiva-
lent diameter) range of 0.8–42 nm. In case of neutral par-
ticles, the lowest measurable size is in practice about 2 nm
due to the presence of charger ions with mobilities of 1.3–
1.6 cm2 V−1 s−1 (Wiedensohler, 1988; Asmi et al., 2009).
The NAIS operates at a five-minute time resolution in order
to optimize the sensitivity and signal-to-noise ratio.

The overall performance of the NAIS was tested under
both laboratory and field condition in Tartu, Estonia. In
the laboratory tests, well-defined cluster ions, aerosol ions
and neutral aerosol particles were used. The first air ion
spectrometer calibration and inter-comparison workshop was
then organised in Helsinki, Finland. The workshop took
place in January–February, 2008, just prior to the EUCAARI
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Intensive Observation Period (Asmi et al., 2009). In the
workshop, ten ion spectrometers, including four NAIS in-
struments, were compared and calibrated. Calibrations were
made with mobility standards (see Ude and de La Mora,
2005) and silver particles by using high-resolution differ-
ential mobility analysers (HDMA, Hermann et al., 2007).
The monodisperse mobility distribution broadened to ap-
proximately 3–5 size channels when measured by the ion
spectrometers due to the strong diffusion of these small
ions. Particle sizes detected by the ion spectrometers were
slightly smaller (30–50% larger mobilities) than those char-
acterized with the HDMA. Excluding some overestimation at
the smallest sizes, ion concentrations measured by the spec-
trometers were in good agreement with those measured by
the aerosol electrometer and condensation particle counter.

The NAIS was developed further in order to extend its
operation to variable altitudes, including its airborne oper-
ation. The development aimed at the improved control and
automatic tuning of air flows and other instrument operation
parameters following the variations of ambient conditions.
The NAIS was tested in airborne measurements during the
EUCAARI long-range experiment EUCAARI LONGREX
2008. The NAIS performed very well during the flights
(Mirme et al., 2010). The effects of varying pressure and
temperature as a function of flight height were taken into ac-
count by automatically adjusting the sheath flow of the in-
strument, which kept the volumetric sampling flow rate con-
stant. Furthermore, the variability of the charger ion mobil-
ity was compensated by adjusting the corona current. The
NAIS was capable of automatically adapting to variations of
barometric pressure from the surface level up to the 8-km
altitude without any additional corrections. At higher al-
titudes, the measured size distribution was corrected in the
post-processing phase (Mirme et al., 2010).

The NAIS is the first instrument, from which the formation
rates of both neutral and charged sub-3 nm diameter particles
can be determined. By writing the balance equation for 2–
3 nm particles and rearranging the terms, the total formation
rate of 2-nm particles (J2) is obtained from (Kulmala et al.,
2007a; Manninen et al., 2009b):

J2 =
dN2−3

dt
+CoagS2×N2−3+

f

1nm
GR3N2−3. (1)

HereN2−3 is the total concentration of particles in the size
range 2–3 nm, CoagS2 is the coagulation sink of 2-nm par-
ticles, and GR3 is the particle growth rate at 3 nm andf
presents a fraction of 2–3 nm particles that has been acti-
vated for the growth (assumed equal to unity without a better
knowledge). Since the particle number size distribution in
the size range 2–3 nm is not known, we cannot calculate the
exact rate at which particles in this size range are lost by co-
agulation with pre-existing larger particles. As a result, we
use CoagS2 as an approximation to this loss rate, which may
lead to a slight over-prediction of the value ofJ2.

In case of charged particles, the ion-ion recombination and
charging of 2–3 nm neutral particles need to be taken into
account, after which their formation rate at 2 nm becomes:

J±

2 =
dN±

2−3

dt
+CoagS2×N±

2−3+
f

1nm
GR3N

±

2−3

+αN±

2−3N
∓

<3−βN2−3N
±

<2. (2)

Here the superscript± refers to positively and negatively
charged particles andN±

2−3, N±

<2 and N±

<3 are the corre-
sponding ion concentrations in the size range 2–3 nm, below
2 nm and below 3 nm, respectively. The ion-ion recombina-
tion coefficient,α, and the ion-neutral attachment coefficient,
β, can be assumed to be equal to 1.6× 10−6 cm3 s−1 and
0.01× 10−6 cm3 s−1, respectively (e.g. Tammet and Kul-
mala, 2005). The last two terms in the right hand side of
Eq. (2) are not exact but rather provide a first order correc-
tion for the formation rate due to ion-ion recombination and
ion-aerosol attachment, respectively. Used together, Eqs. (1)
and (2) make it possible to estimate the contribution of ion-
induced nucleation to the total nucleation rate, as will be
demonstrated in Sect. 4.2.

2.2 Condensation particle counters

A Condensation Particle Counter (CPC) is a widely-used in-
strument to detect the number concentration of aerosol par-
ticles too small to be observed with optical techniques (Mc-
Murry, 2000). The CPC is able to monitor concentrations of
both charged and neutral particles, although the experiments
show that the charge carried by the particle enhances the de-
tection efficiency (Winkler et al., 2008a, b).

The instrumental development has improved the detection
efficiency (D50) of the CPCs defined as the size, where 50%
of the sampled particles are detected. In the CPC design,
the work by Stolzenburg and McMurry (1991) was a mile-
stone, as they presented a counter capable of detecting par-
ticles down to 3 nm in diameter. The detection efficiency
of a CPC depends in general on the generated supersatura-
tion inside the CPC, which determines the smallest particle
size that is activated to growth. Already Mertes et al. (1995)
showed that for a butanol based CPC, the value of D50 can be
decreased by increasing the supersaturation inside the CPC.
Peẗajä et al. (2006) showed that this applies also to a water-
based CPC (Hering et al., 2005). The limiting factor is the
onset of homogeneous nucleation of the CPC working fluid.

The supersaturation at the onset of homogeneous nucle-
ation depends on thermodynamic properties of the working
fluid, and the detection efficiency of the CPC can be im-
proved by selection of the working fluid (Iida et al., 2009).
The CPC performance can also be improved by minimiz-
ing the losses of the small particles. As part of EUCAARI,
Vanhanen et al. (2010) combined the rapid mixing type CPC
(Sgro and de la Mora, 2004) with a diethylene glycol based
CPC and showed that in their design the diffusion losses
dominate the detection efficiency down to molecular sizes
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(diameter∼1 nm). In other words, given that the sampled
particles are not lost during the sampling process, the instru-
ment developed by Vanhanen et al. (2010) is able to detect
particles down to 1 nm in size.

The onset of homogeneous nucleation does not necessar-
ily restrain the use of a CPC in atmospheric measurements.
Kulmala et al. (2005) used a UF02-proto CPC (Mordas et
al., 2005, 2008) as a nucleation chamber. By subtracting
the contribution of homogeneous nucleation inside the CPC,
they were able to probe the ambient sub-3 nm particle con-
centration. During EUCAARI, this approach was further
developed by Sipil̈a et al. (2008, 2009), who utilized the
pulse-height (PH) analysis (Saros et al., 1996; Weber et al.,
1996) in differentiating the signals originating from the ho-
mogeneously nucleated working fluid and the ambient sam-
ple. Lehtipalo et al. (2009) measured the concentration of
sub-3 nm particles in a boreal forest by using a tuned PH-
CPC. The estimated concentrations varied from 5× 102 to
5× 104 clusters cm−3, which is more than what one would
expect from the recombination of ion clusters.

The detection efficiency of the CPC depends also on the
chemical composition of the sampled particles. For exam-
ple, water solubility and wetability increase the detection
efficiency of inorganic salt particles compared with non-
hygroscopic silver particles (Petäjä et al., 2006; Herman et
al., 2007). In terms of reliable and reproducible number con-
centration measurements, this is a drawback, especially in
environments where a lot of nucleation mode particles are
present. This disadvantage was turned into a benefit by Kul-
mala et al. (2007b) who applied a battery of CPCs (CPCB)
with different working fluids in parallel. Furthermore, Riip-
inen et al. (2009) utilized the CPCB in the boreal forest to
probe the composition of 2–9 nm particles by looking into
their water solubility. The results showed that during new-
particle formation, the initially more hygroscopic particles
grew in size by condensation of less water soluble material.

2.3 Ion-Differential Mobility Particle Sizer (Ion-DMPS)

Traditionally, aerosol number size distributions are measure-
ments with mobility size spectrometers such as the DMPS or
SMPS (Differential/Scanning Mobility Particle Sizer; Hop-
pel, 1978; Wang and Flagan, 1990; Aalto et al., 2001). The
mobility size spectrometer relies on the fact that the sampled
particles have a known charge distribution (Wiedensohler,
1988). This can be acquired with a radioactive source, which
provides an excess amount of both negative and positive ions
that either charge or neutralize the sampled particle popula-
tion depending on the initial charging state. The residence
time of the air sample in the bipolar charger is long enough
for the sample to reach the known, steady-state charge distri-
bution.

In EUCAARI, a new instrument called the Ion-DMPS was
introduced and also applied in field (Laakso et al., 2007a).
The radioactive source of the Ion-DMPS can be by-passed on

demand, which enables the measurement of either the atmo-
spheric ion number size distribution or of the corresponding
size distribution of a neutralized aerosol sample. By compar-
ing these two modes of operation, a size-dependent charging
state is obtained (Laakso et al., 2007a; Gagné et al., 2008).
The value of the charging state is larger than unity when the
population of particles of a given size is more charged than in
the stationary state corresponding to the neutralized aerosol
sample. In such a case the particle population is called over-
charged. Similarly, an undercharged particle population has
a charging state smaller than unity. The Ion-DMPS measures
the charging state for both negative and positive polarities.

The charging state obtained from the Ion-DMPS provides
information about the participation of ion-induced nucleation
in new-particle formation: a measured charging state>1 sug-
gests at least some contribution by ion-induced nucleation,
whereas a charging state<1 indicates no or minor contribu-
tion by ion-induced nucleation (Laakso et al., 2007a). For a
more quantitative statement, we need to apply the theoretical
framework developed by Kerminen et al. (2007). Accord-
ing to this work, the charging state of a growing nucleation
mode is governed by its initial charging state, atmospheric
cluster ion concentration, and the growth rate of the nucle-
ation mode. In practice this can be interpreted as follows:
regardless of the nucleation mechanism, growing nuclei are
exposed to collisions with atmospheric cluster ions, as a re-
sult of which the charging state of the growing nuclei popu-
lation is changed. If the nuclei growth rate is slow, e.g. due to
a low concentration of condensable vapours, the information
on the initial charging state will be lost by the time the Ion-
DMPS detects the growing clusters. On the other hand, if the
nuclei growth is rapid enough and the atmospheric cluster
ion concentration is low enough, the analytical formulae pre-
sented by Kerminen et al. (2007), together with Ion-DMPS
data, can be used to extract the relative roles of ion-induced
and neutral nucleation mechanisms in observed new-particle
formation events. The application of the Ion-DMPS under
field conditions will be discussed in Sect. 4.2.

2.4 Atmospheric Pressure Interface Time of Flight
Mass Spectrometer (APi-TOF)

Mass spectrometric techniques can provide insights into the
composition of atmospheric ions and clusters (Eisele, 1989a,
b; Eichkorn et al., 2002; Junninen et al., 2010; Zhao et al.,
2010). Within EUCAARI, we tested an Atmospheric Pres-
sure Interface Time-of-Flight Mass Spectrometer (APi-TOF,
Tofwerk AG), the mass/charge (in unit Th) range of which
extends up to 2000 Th (Junninen et al., 2010). With the
high mass accuracy (<20 ppm) and mass resolving power
(3000 Th/Th), the APi-TOF makes it possible to determine
the composition of small atmospheric ions. The ions were
identified based on their high-resolution masses, isotopic pat-
terns and peak-to-peak correlograms. Potential candidates
were also judged based on proton affinities and quantum
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chemical considerations (Junninen et al., 2010; Ehn et al.,
2010).

The operation of the APi-TOF at an urban site in Helsinki
and in a rural environment in Hyytiälä, Finland revealed a
considerable diurnal variability in the chemical composition
of ions and their clusters (Junninen et al., 2010; Ehn et al.,
2010). The driving factors were photochemical production
of various ions and their proton affinity. In the atmospheric
ion population the charge is transferred to molecules with the
highest (positive ions) and lowest proton affinities (negative
ions). Thus, during daytime the negative ions were domi-
nated by strong acids (e.g. sulfuric and malonic acid) and
their clusters. During night, nitric acid and organic acids
were the dominant peaks in the negative spectrum. For the
first time an organo-sulphate (glycolic acid sulphate) was de-
tected in the gas phase (Ehn et al., 2010). The diurnal cy-
cle was less pronounced in the positive spectrum, which was
dominated by strong bases (alkyl pyridines, quinolines and
amines). A detailed description of the API-TOF and first
results can be found in Junninen et al. (2010) and Ehn et
al. (2010).

3 Laboratory experiments

Within EUCAARI, homogeneous nucleation experiments
were conducted in three laboratories using two different flow
tubes and a smog chamber. Homogeneous nucleation ex-
periments were made for the binary sulphuric acid-water
system (H2SO4-H2O), for the ternary sulphuric acid-water-
ammonia system (H2SO4-H2O-NH3), and for various sys-
tems including both sulphuric acid and organic compounds
(H2SO4-Org). The binary H2SO4-H2O system was given
a high priority because (i) it is the most widely-studied at-
mospheric nucleation mechanism, (ii) even today only few
large-scale atmospheric models include any other nucleation
mechanism in their simulations, and (iii) laboratory experi-
ments concerning this system have turned out to be very diffi-
cult to conduct and interpret (Berndt et al., 2005, 2008; Ben-
son et al., 2008). The ternary H2SO4-H2O-NH3 system was
selected because ammonia, being the dominant base to neu-
tralize atmospheric sulphate particles (Bowman et al., 1997),
is also the most obvious candidate for enhancing sulphuric
acid-water nucleation (see Merikanto et al., 2007, and ref-
erences therein). The H2SO4-Org system was selected (i)
because organic compounds are known to play a significant
role in nuclei growth (e.g. Smith et al., 2008), and thus one
might expect them to be involved in the nucleation process
as well, and (ii) because very few laboratory experiments on
this system have been conducted so far (Zhang et al., 2004).
In addition to homogenous nucleation, a series of heteroge-
neous nucleation experiments were made for both neutral and
charged particles and clusters.

3.1 Binary sulphuric acid-water nucleation

The binary sulphuric acid-water nucleation experiments were
performed in the Leibniz Institute for Tropospheric Research
laminar flow tube (IfT-LFT) and in the Finnish Meteorolog-
ical Institute (FMI) laminar flow tube (Sipilä et al., 2010).
Two types of experiments were conducted: (i) experiments
where H2SO4 was produced in situ via the reaction of OH
radicals with SO2 (“photolysis” experiments), and (ii) ex-
periments where H2SO4 was taken from a liquid sample
(“liquid-sample” experiments). In both cases, the H2SO4
concentration was measured directly using a chemical ion-
ization mass spectrometer (Petäjä et al., 2009). Another spe-
cific feature associated with these experiments was that nu-
cleated particles were measured down to 1.3–1.5 nm in mo-
bility diameter. This was achieved with the help of a mod-
ified pulse height analyzing ultrafine condensation particle
counter and, in some experiments, with a mixing type parti-
cle size magnifier (Sipilä et al., 2010).

Earlier studies on H2SO4-H2O nucleation reported a clear
disagreement between the photolysis and liquid-sample ex-
periments, being several orders of magnitude in the nucle-
ation rate and a couple of orders of magnitude in the on-
set H2SO4 concentration required for a nucleation rate of
1 cm−3 s−1 (Benson et al., 2008; Berndt et al., 2008). The
experiments conducted within EUCAARI demonstrate that
this disagreement is largely a measurement artifact arising
from the high sensitivity of the measured “nucleation rate”
to: (i) the temporal and spatial profile of the gaseous H2SO4
concentration inside the measurement device and (ii) the de-
tection efficiency of the instrument used to measure nucle-
ated particles. When minimizing the influence of these two
effects in the experiments, practically no difference in the
nucleation rate between the photolysis and liquid-sample ex-
periments was observed any more (Sipilä et al., 2010).

The new H2SO4-H2O nucleation experiments are in line
with EUCAARI field observations (Fig. 1). They both pre-
dict a slope between about 1 and 2 in a plot of the nucle-
ation rate versus gaseous H2SO4 concentration, and require
roughly the same amount of H2SO4 to initiate the nucleation
process. These findings indicate (1) that particles are very
likely formed via a similar H2SO4-driven nucleation mecha-
nism in both the laboratory and the ambient atmosphere, and
(2) that according to the nucleation theorem, critical clus-
ters formed in the nucleation process contain only one or
two H2SO4 molecules. Both laboratory and field measure-
ments could be explained by either activation-type (Kulmala
et al., 2006) or kinetic (McMurry and Friedlander, 1979) nu-
cleation, but not by the thermodynamic binary H2SO4-H2O
nucleation which predicts more than five H2SO4 molecules
in a critical cluster under typical ambient conditions (e.g. Yu,
2008). This does not necessarily mean that existing binary
H2SO4-H2O nucleation theories are wrong by themselves:
it is possible that H2SO4-H2O nucleation is affected by the
presence of impurities like ammonia, amines and various
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Figure 1. Measured formation rate of 2-nm particles (J2) in different atmospheric 

locations (Hyytiälä, Melpitz and San Pietro Capofiume) and in a laminar flow reactor 

(IfT-LFT) as a function of measured sulfuric acid concentration. 

Fig. 1. Measured formation rate of 2-nm particles (J2) in differ-
ent atmospheric locations (Hyytiälä, Melpitz and San Pietro Capofi-
ume) and in a laminar flow reactor (IfT-LFT) as a function of mea-
sured sulfuric acid concentration.

organic compounds. Such compounds are practically always
present in the atmosphere, and low level of these compounds
(impurities) cannot be excluded from current laboratory ex-
periments.

3.2 Influence of ammonia and amines on sulphuric
acid-water nucleation

The ternary sulphuric acid-water-ammonia and sulphuric
acid-water-amine nucleation experiments were performed in
the Leibniz Institute for Tropospheric Research laminar flow
tube (IfT-LFT; Berndt et al., 2005, 2010) at a temperature
of 293± 0.5 K by producing H2SO4 via the reaction of OH
radicals with SO2. NH3 (Merck,>99.9%) was added to the
carrier gas stream using a diluted sample from a gas meter-
ing unit. NH3 concentrations were measured at the inlet and
outlet of the IfT-LFT by means of an OMNISENS TGA310
system (detection limit 2.5× 109 molecules cm−3).

Figure 2 shows measured total particle number con-
centrations (TSI 3025) as a function of H2SO4 con-
centration in the absence (NH3 concentration below
2.5× 109 molecules cm−3, i.e. below about 100 ppt) and
presence of NH3, and for different values of rel-
ative humidity. The inlet NH3 concentration was
1.2× 1012 molecules cm−3 in these experiments and, after an
equilibration time of about one hour, the corresponding out-
let concentration was 1.1× 1012 molecules cm−3. A distinct
increase of the total particle number concentration with in-
creasing relative humidity was observed when the NH3 con-
centration was below the detection limit. The enhancing ef-
fect of NH3 addition on the nucleation was found to be more
pronounced under drier conditions, i.e. a factor of about 20
at a relative humidity of 13% and only a factor of about 2
at a relative humidity of 47%. Experiments with different
inlet NH3 concentrations showed that the presence of NH3
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Figure 2. Total particle number concentration as a function of the H2SO4 concentration in 

nucleation experiments made at different relative humidities (r.h.). The experiments were 

conducted both in the presence of NH3 (full circles) and with NH3 concentration 

remaining below the detection limit (open circles). 

Fig. 2. Total particle number concentration as a function of the
H2SO4 concentration in nucleation experiments made at different
relative humidities (RH). The experiments were conducted both in
the presence of NH3 (full circles) and with NH3 concentration re-
maining below the detection limit (open circles).

increased slightly the mean diameter of nucleated particles,
as well as their total number concentration (Fig. 3).

The above experiments show a clear, yet moderate, en-
hancing effect of ammonia on sulphuric acid-water nucle-
ation. While this is qualitatively similar to what has been
observed in other laboratory experiments (e.g., Ball et al.,
1999; Benson et al., 2009), a quantitative comparison be-
tween these experiments, or between the experiments and
available theories, is not possible at the moment. One reason
for this is that the different experimental studies have been
made at different NH3 and H2SO4 concentration levels. The
second reason is that none of the laboratory experiments have
been made at low (<tens of ppt) NH3 concentrations. This
is crucial because nucleation rates predicted by the exist-
ing ternary H2SO4-H2O-NH3 nucleation theories, although
deviating quite a lot from each other, are most sensitive to
changes in NH3 at concentration levels less than a few ppt
(e.g., Napari et al., 2002, Anttila et al., 2005, Merikanto et
al., 2007).

A series of experiments were conducted, in which tert-
butylamine (as an arbitrary sample amine) instead of am-
monia was added into the system (Berndt et al., 2010).
Measurements at a relative humidity of 13% with a tert-
butylamine addition of about 1010 molecules cm−3 showed
an enhancement of produced particles by about two orders
of magnitude, whereas extrapolation of the NH3 data down
to concentrations of about 1010 molecules cm−3 suggested
only a small or negligible effect of NH3. This finding in-
dicates a very strong effect of amines for nucleation even
for atmospheric amine concentrations in the range of 108–
109 molecule cm−3. Therefore, amines are probably promis-
ing candidates explaining existing discrepancies between bi-
nary nucleation theory and observations in the field and the
laboratory.
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Figure 3. Measured particle number size distributions over the size range of 1.5–4 nm in 

nucleation experiments conducted at different ammonia concentration levels. The H2SO4 

concentration was 1.2×108 molecules cm–3 and the relative humidity was 22%. The given 

NH3 concentrations refer to those inside the inlet and the corresponding outlet 

concentrations are presented in the brackets. 

Fig. 3. Measured particle number size distributions over the size
range of 1.5–4 nm in nucleation experiments conducted at differ-
ent ammonia concentration levels. The H2SO4 concentration was
1.2× 108 molecules cm−3 and the relative humidity was 22%. The
given NH3 concentrations refer to those inside the inlet and the cor-
responding outlet concentrations are presented in the brackets.

3.3 Influence of organics

The role of organic compounds in nucleation was investi-
gated in Paul Scherrer Institute (PSI) by using an environ-
mental chamber, and in Jülich using a Plant Aerosol Atmo-
sphere Chamber (JPAC) setup.

A series of photo-oxidation experiments was performed
in the 27-m3 Paul Scherrer Institute environmental chamber
investigating new particle formation in the presence of 1,3,5-
trimethylbenzene (TMB), NOx and SO2 at various mixing
ratios (Metzger et al., 2010). After irradiation of this mixture
OH radicals oxidized SO2 and TMB producing H2SO4 and
a variety of organic products. The production of low volatil-
ity products lead to formation of secondary organic aerosols
(SOA). The importance of sulphuric acid was clearly seen,
as with increasing SO2 mixing ratio nucleation occurred ear-
lier and the particle number concentration (diameter>3 nm)
increased from 103 to 105 cm−3. After reaching the peak
concentration, the particle number concentration decreased
due to wall loss and coagulation.

Plotting the nucleation rate of 1.5-nm particles (J1.5) ver-
sus the concentration of sulphuric acid yielded a slope close
to 2 (Metzger et al., 2010). This would indicate that the crit-
ical cluster contains two sulphuric acid molecules. However,
this only applies when other variables of influence (temper-
ature and gas phase concentrations of other species partici-
pating in the nucleation process) remain constant. However,
within an individual experiment H2SO4 and organic photo-
oxidation products are expected to be highly correlated since
their formation and loss processes are highly similar. For
the further analysis, the concentration of a first order product

of sufficiently low volatility to participate in the particle for-
mation process (called NucOrg) was calculated based on the
decay of the TMB concentration and assuming the same loss
rates as sulphuric acid (for details see Metzger et al., 2010).
The isopleth plot of Fig. 4 clearly shows that the data can
only be explained with a dependence of the nucleation rate
on both sulphuric acid and a nucleating organic (see Metzger
et al., 2010, Supporting Information). Thus, the slope of 2
mentioned above is rather a result of highly correlated con-
centrations of sulphuric acid and NucOrg.

This result was also implemented in a global model.
Parameterising this process in the global aerosol model
GLOMAP resulted in substantially better agreement with
ambient observations compared to control runs. It can there-
fore be speculated that in many locations, the new-particle
formation is influenced not only by the sulphuric acid con-
centration but also by the concentrations of co-nucleating
species. The chemical nature of these species remains, how-
ever, to be identified.

The JPAC setup at Jülich (Mentel et al., 2009) was used
to study the effect of organics with realistic mixtures of or-
ganic emissions. The real plant emissions were introduced
to air containing atmospheric levels of ozone, and the pro-
duction of OH radicals was induced by the UV light. In ex-
periments with a constant OH radical production rate and a
varying organic vapour emission rate, it was found that both
the mass and number production rates of>5 nm particles in-
creased with an increasing organic vapour source. For indi-
vidual tree species, the emitted volatile carbon was the main
predictor of formed aerosol number and mass, even though
large variations between the different tree species were ob-
served. Threshold concentrations of organic compounds ini-
tiating particle formation were lower for emissions from all
the tree species than for the reference compound,α-pinene.
The differences between individual species could possibly be
explained by oxidized VOC concentrations; sesquiterpenes
were not found to play a specific role (Mentel et al., 2009).
In another experiment series, plant emissions were studied
in the presence and absence of added isoprene. From 3 to 4
OH radical reactions were needed to induce nucleation and
the addition of isoprene suppressed aerosol number forma-
tion while having a negligible effect on particle growth. The
suppression could be parameterised using a model that had
particle number formation depending on the OH oxidation of
other plant VOCs, with isoprene acting as an OH scavenger
(Kiendler-Scharr et al., 2009).

In both JPAC experiments, a clear positive correlation be-
tween the amount of non-isoprene organic emissions and the
rate of particle formation points towards an enhancing effect
by organics. If particle formation was controlled by some
inorganic vapour formed by OH oxidation, nucleation sup-
pression by all OH-reactive organics would be expected due
to the competition for OH radicals. However, because the
size cutoff in the measurements was significantly larger than
the expected size of the newborn CN, the exact nature of the
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Figure 4. Isopleth plot of J1.5 (cm–3 s–1) as a function of log[H2SO4] versus log[NucOrg]. 

The iso-lines are drawn to guide the eye. If J1.5 depended on either H2SO4 or NucOrg 

alone the iso-lines would need to be horizontal or vertical, respectively. The diagonal iso-

lines clearly show that the data can only be explained with a dependence of J1.5 from both 

H2SO4 and NucOrg (from Metzger et al., 2010, Supporting Information). 

Fig. 4. Isopleth plot of J1.5 (cm−3 s−1) as a function of
log[H2SO4] versus log[NucOrg]. The iso-lines are drawn to guide
the eye. IfJ1.5 depended on either H2SO4 or NucOrg alone the
iso-lines would need to be horizontal or vertical, respectively. The
diagonal iso-lines clearly show that the data can only be explained
with a dependence ofJ1.5 from both H2SO4 and NucOrg (from
Metzger et al., 2010, Supporting Information).

formation enhancement mechanism remains unknown. The
isoprene effect demonstrates that organics influence nucle-
ation indirectly via effects on the gas phase oxidation; direct
effects may include modifications of early growth or even
participation in nucleation itself. Based on the JPAC mea-
surements, particle formation is induced exclusively by (mul-
tiple) OH oxidation rather than ozonolysis of organic precur-
sors.

3.4 Heterogeneous nucleation experiments

Laboratory experiments on the effect of charge (both nega-
tive and positive) on the heterogeneous nucleation probabil-
ity were performed at University of Vienna (Winkler et al.,
2008a). In those experiments, the condensing vapours used
were n-propanol, water and n-nonane, i.e. one water-soluble
and one non-soluble organic substance. Both unary and bi-
nary nucleation were investigated.

An example of the conducted nucleation experiments can
be seen in Fig. 5. This example illustrates clearly that when
the saturation ratio of the vapour responsible for heteroge-
neous nucleation (heren-propanol) is gradually increased,
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Figure 5. Heterogeneous nucleation probability curves for the activation of differently 

charged tungsten oxide (WOx) particles with mean electrical mobility diameter of 2.0 nm. 

Negatively charged particles are activated at lowest vapor saturation ratios followed by 

positively charged particles and neutral ones clearly indicating a charge and sign 

preference for the heterogeneous nucleation at this particle size.  

Fig. 5. Heterogeneous nucleation probability curves for the acti-
vation of differently charged tungsten oxide (WOx) particles with
mean electrical mobility diameter of 2.0 nm. Negatively charged
particles are activated at lowest vapor saturation ratios followed by
positively charged particles and neutral ones clearly indicating a
charge and sign preference for the heterogeneous nucleation at this
particle size.

the negatively-charged particles or clusters will activate first,
then the positively-charged ones, and finally also the neutral
ones. This kind of behaviour was evident in the sub-4 nm
size range, and the effect was more pronounced for smaller
particle sizes (Winkler et al., 2008a).

Heterogeneous nucleation of clusters and particles can
be described using the concept of activation (or nucleation)
probability,P , which has been widely applied in the theory
of heterogeneous nucleation (e.g., Lazaridis et al., 1992):

P =
Nacti

Nc
= 1−exp(−It), (3)

HereNact is the number concentration of activated clusters
(aerosol particles),Nc is the total cluster concentration be-
fore activation,I is the heterogeneous nucleation rate (per
aerosol particle and time), andt is nucleation time. Acti-
vation of pre-existing clusters by sulphuric acid could ex-
plain the linear dependence of the nucleation rate to the sul-
phuric acid concentration (Kulmala et al., 2006), as seen in
the recent laboratory experiments (Sects. 3.1 and 3.3) and
many field observations (Sect. 5.3). Preferential activation of
charged clusters over neutral ones might also explain the ap-
parently larger contribution by ion-induced nucleation in the
beginning of atmospheric nucleation events (see Sect. 4.2).
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4 Field observations

The specific feature of EUCAARI field measurements was
the extensive use of various ion and cluster spectrome-
ters. Prior to the EUCAARI Intensive Observation Period
(IOP) that took place between March 2008 and April 2009,
the Neutral cluster and Air Ion Spectrometer (NAIS; see
Sect. 2.1) was operated intermittently in Hyytiälä, Finland
(Kulmala et al., 2007a; Manninen et al., 2009a, b). Dur-
ing the IOP, five NAIS instruments and eight other ion spec-
trometers were continuously operated for roughly a full year
at 13 field sites (Manninen et al., 2010). These sites in-
cluded Hyytïalä and Pallas (Finland), Vavihill (Sweden),
Mace Head (Ireland), Cabauw (The Netherlands), K-Puszta
(Hungary), Hohenpeissenberg and Melpitz (Germany), San
Pietro de Capofiume (Italy), Jungfraujoch (Schwitzerland),
Puy de D̂ome (France), Finokalia (Greece) and Marikana vil-
lage (South Africa). Finally, free-tropospheric cluster mea-
surements were conducted by operating the airborne NAIS
in an aircraft during the EUCAARI LONGREX experiment
in May 2008 (Mirme et al., 2010). In the following we
summarise the main findings from the NAIS measurements,
along with additional information obtained from the Ion-
DMPS measurements.

4.1 Detection of neutral and charged clusters and
particles

Prior to EUCAARI, experimental information on sub-3 nm
atmospheric aerosol populations was based almost entirely
on air ions, i.e. measuring charged molecular clusters and
aerosol particles. The NAIS instrument made it possible to
detect neutral atmospheric aerosol particles down to about
2 nm diameter. As a result, the first quantitative estimates
on the concentrations of neutral sub-3 nm particles were ob-
tained for both continental boundary layer (Kulmala et al.,
2007a) and the free troposphere (Mirme et al., 2010).

Size distributions of neutral and naturally charged par-
ticles/clusters provide further insight into the origin and
dynamics of nucleated particles. In practically all lower-
tropospheric environments, naturally charged particles were
found to have an almost persistent and narrow concentration
band, or mode, close to the mobility diameter of 1 nm (e.g.
Hõrrak et al., 2003; Hirsikko et al., 2005; Vartiainen et al.,
2007; Manninen et al., 2009a). The distinct presence of this
cluster ion mode was perturbed only (i) by clouds, inside
which the smallest ions are effectively scavenged by cloud
droplets (Lihavainen et al., 2007; Venzac et al., 2007), (ii)
by rain events that typically produced additional sub-10 nm
ions (see Tammet et al., 2009), and (iii) by some nucleation
events (e.g. H̃orrak et al., 2003; Vana et al., 2008). The
aircraft measurements made during the LONGREX experi-
ment, along with ground-based measurements at high alti-
tudes, revealed that the cluster ion mode can be seen in the
free troposphere as well (Fig. 6; Venzac et al., 2007; Boulon
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Figure 6: Average particle (black) and ion (positive: red; negative: blue) number size 

distributions at different height levels during the EUCAARI LONGREX 2008 campaign. 

The shaded area represents variability (5 to 95 percentiles) of the corresponding number 

size distributions. 

Fig. 6. Average particle (black) and ion (positive: red; negative:
blue) number size distributions at different height levels during the
EUCAARI LONGREX 2008 campaign. The shaded area represents
variability (5 to 95 percentiles) of the corresponding number size
distributions.

et al., 2010; Mirme et al., 2010). Concentrations of charged
particles displayed usually a minimum just above the clus-
ter ion mode and then a broader secondary maximum above
10 nm (e.g. Komppula et al., 2007). This latter mode results
from the attachment of cluster ions with pre-existing neutral
particles (see the simulations in Sect. 5.2), being most pro-
nounced in polluted continental boundary layers loaded with
Aitken mode particles (see Fig. 6).

Due to instrumental limitations, the NAIS cannot provide
quantitative information about the total concentration of neu-
tral sub-3 nm particles, nor about the exact shape of the corre-
sponding size distribution down to 1 nm. The existing NAIS
data demonstrates, however, that neutral sub-3 nm particles
clearly dominate overcharged ones in the lower troposphere
(Kulmala et al., 2007a; Manninen et al., 2009a). During the
LONGREX measurements, concentrations of neutral parti-
cles in the diameter range 2-10 nm were, on average, roughly
two orders of magnitude larger than those of charged parti-
cles throughout the tropospheric column (Fig. 6 and Mirme
et al., 2010).
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4.2 Contribution of ion-induced nucleation

The NAIS and Ion-DMPS provide complementary informa-
tion about the role of ion-induced nucleation in atmospheric
new-particle formation. In Hyytiälä, Finland, these two in-
struments were operated in parallel for several months. An
example of the resulting measurements during one of the nu-
cleation event days is depicted in Fig. 7. Both instruments
showed a clear increase in the charged fraction (CF) of 2.8-
nm particles at the beginning of the event, with subsequent
decrease of the CF toward the end of the event. Such be-
haviour indicates that the contribution of the ion-induced nu-
cleation to the total nucleation is at its highest during the ini-
tial stages of new-particle formation. Above 5 nm, the value
of the CF increased with increasing particle size, which can
be explained by evolution of the nuclei toward charge equi-
librium during their growth (Kerminen et al., 2007). The ra-
tio of the apparent formation rate of charged particles to that
of total particles is in line with these views (Fig. 7, bottom).
The somewhat smaller values of the CF for the smallest parti-
cles recorded by the NAIS, as compared with the Ion-DMPS,
are probably due to the background caused by charger ions
inside the NAIS.

Both the NAIS and Ion-DMPS data indicate that ion-
induced nucleation contributes, on average, less than 10%
of the total nucleation rate in Hyytiälä (Gagńe et al., 2008,
2010; Manninen et al., 2009b). However, the fraction of
nucleation explained by ion-induced nucleation varied con-
siderably between the different days, with larger fractions
favoured by warmer and sunnier days. On most of the days,
both neutral and ion-induced nucleation seemed to occur si-
multaneously, but with temporally varying portions (Laakso
et al., 2007b; Gagńe et al., 2010).

The multi-site operation of NAIS and other ion spectrome-
ters (Manninen et al., 2010) revealed that the average forma-
tion rate of charged 2-nm particles (0.1–0.2 cm−3 s−1) varied
surprisingly little between the different measurement sites,
whereas the average total formation rate of 2-nm particles
varied from below 1 to more than 30 cm−3 s−1. This indi-
cates that neutral nucleation pathways become increasingly
important when the total nucleation rate is higher. In more
general terms, these results might be interpreted as a fre-
quent, yet moderate, ion-induced nucleation taking place in
the lower troposphere, outweighed by usually much stronger
neutral nucleation that is sensitive to local atmospheric con-
ditions.

According to theoretical arguments, the most favourable
location for ion-induced nucleation is the upper part of the
troposphere (Kazil et al., 2008; Yu, 2010). If the contribution
of ion-induced nucleation to total nucleation were to increase
considerably when going from the boundary layer toward the
upper troposphere, one would expect to see a corresponding
increase in the concentration ratio between charged and neu-
tral clusters. During the air craft measurements conducted
within the EUCAARI LONGREX campaign, no sign of such

an increase was observed. More airborne measurements of
charged and neutral sub-3 nm clusters in different environ-
ments are clearly needed to address the role of ion-induced
nucleation in free-tropospheric aerosol formation.

5 Nucleation theory, modelling and parameterisations

5.1 Quantum chemical calculations

Quantum chemical methods have become a powerful tool to
study the molecular mechanism behind new-particle forma-
tion and composition of molecular clusters that are always
present in the atmosphere (Kurtén and Vehkam̈aki, 2008;
Nadykto et al., 2008). Most importantly, such a high-level
theory can complement, guide and help to interpret exper-
imental work, especially since experimental techniques de-
tecting the composition of small molecular clusters present
in the atmosphere are rapidly developing at the moment.

By using different quantum mechanics methods, atmo-
spherically relevant molecular clusters were studied in EU-
CAARI, with the final aim of elucidating the molecular
mechanism behind observed atmospheric nucleation. Quan-
tum chemical calculations provide evaporation rates, or
equivalently formation free energies, of different clusters that
can be involved in nucleation. Evaporation rates are needed
to assess the stability of various clusters and to identify the
pathways through which clusters nucleate.

As part of EUCAARI, the evaporation rates of a wide va-
riety of clusters were calculated, ranging from clusters con-
taining only sulphuric acid to clusters containing complex
molecules like amines or large organic acids (Fig. 8). Our
main findings can be summarized as follows: (i) ammonia
can enhance neutral sulphuric acid-water nucleation to some
extent, but has a smaller role in corresponding ion-induced
nucleation (Ortega et al., 2008), (ii) dimethylamine enhances
neutral and ion-induced sulphuric acid-water nucleation in
the atmosphere more effectively than ammonia (Kurtén et
al., 2008; Loukonen et al., 2010), (iii) some of the organic
acids resulting from monoterpene oxidiation can form very
stable clusters with sulphuric acid, being good candidates to
explain the pool of neutral clusters found in field measure-
ments (see Sect. 4.1), and (iv) organo-sulphates can be in-
volved in ion-induced nucleation. Note that indications of
the presence of gaseous organo-sulfates ions were obtained,
for the first time, by using the new APi-TOF instrument in
EUCAARI (Sect. 2.4).

5.2 Ion-UHMA

A new modelling tool, called Ion-UHMA, which assists the
interpretation of ion spectrometer measurements, was devel-
oped (Lepp̈a et al., 2009). The Ion-UHMA is a sectional box
model that simulates the dynamics of neutral and electrically
charged aerosol particles under atmospheric conditions. It
builds on the aerosol dynamical model UHMA (Korhonen et
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Fig. 7. Time evolution of the charged fraction of particles in three different size bins (top panels) based on NAIS and Ion-DMPS measure-
ments at Hyytïalä on 30 April 2007. The lower panels depict the ratio between the charged and total particle production rate determined from
the NAIS data at the corresponding size bins. The period during which the nucleation event effectively affects each size bin is separated by
vertical bars in the figures.

al., 2004) and model AEROION (Laakso et al., 2002). The
Ion-UHMA includes the basic aerosol dynamical processes
(condensation, coagulation, dry deposition), along with ion-
aerosol attachment and ion-ion recombination. The forma-
tion of new aerosol particles is treated as an input to the
model or, alternatively, the model can be coupled with an ex-
isting mechanistic nucleation model. The size range covered
by the Ion-UHMA is adjustable, but typically ranges from
1–2 nm up to 1000 nm.

The technical performance of the Ion-UHMA was tested,
and its ability to simulate atmospheric nucleation events was
evaluated (Lepp̈a et al., 2009). Most importantly, it was
shown that when the formation rates of neutral and charged
2 nm particles, as obtained from NAIS measurements (see
Eqs. 1 and 2 in Sect. 2.1), are used as model inputs, the
Ion-UHMA successfully reproduces the observed dynamics
of both charged and neutral particles over the size range 2–
20 nm. This means that (i) the model correctly captures the
aerosol dynamics taking place in this size range, and (ii)
the formation rates of 2-nm particles determined from NAIS
measurements are reliable.

As an example of Ion-UHMA simulations, we investi-
gated how well it can reproduce the time evolution of particle
number distribution measured in Hyytiälä on 15 April 2007.
Measured values of temperature, relative humidity, forma-
tion rates of 2 nm particles, and concentrations of charged

sub-2 nm clusters and particles larger than 20 nm were used
as model inputs. Averaged over the particle formation event,
the measured formation rates of total, negative and positive
particles were equal to 1.14, 0.08 and 0.09 cm−3 s−1, re-
spectively, being indicative of the dominance of neutral nu-
cleation. On the other hand, the fraction of 2-nm particles
formed as charged was above the charging probability of
particles of that size, so it is likely that ion-induced nucle-
ation was operating as well during this day. Two condens-
ing vapours were assumed in the simulation: sulphuric acid
with a sinusoidal concentration pattern peaking at local noon
(Peẗajä et al., 2009), and an organic compound with a tem-
porally constant and 1–2 orders of magnitude higher concen-
tration than sulphuric acid. The exact concentration levels
of these vapours were chosen such that the simulated growth
rates of sub-20 nm particles were close to observations.

The simulation produced a new particle formation event
that was qualitatively similar to the measured one (Fig. 9).
The formation of neutral particles dominated over that of
charged particles, even though increased concentrations of
charged particles at sizes of around 2–2.5 nm could be ob-
served in both the simulation and measurements. These par-
ticles were formed as charged and their concentrations de-
creased with an increasing particle diameter due to their neu-
tralization by ion-ion recombination. At sizes of around
4 nm, concentrations of charged particles began to increase
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Figure 8: Relative stability of sulfuric acid clusters with different stabilizing compounds 

(water, organic acids, ammonia and dimethyl amine) based on the evaporation rates kevap 

calculated with quantum chemistry. The atoms are color-coded as follows: yellow- sulfur, 

red – oxygen, grey – hydrogen, blue – nitrogen and green – carbon. Dashed lines depict 

hydrogen bonds. 

Fig. 8. Relative stability of sulfuric acid clusters with different stabilizing compounds (water, organic acids, ammonia and dimethyl amine)
based on the evaporation rateskevapcalculated with quantum chemistry. The atoms are color-coded as follows: yellow – sulfur, red – oxygen,
grey – hydrogen, blue – nitrogen and green – carbon. Dashed lines depict hydrogen bonds.

again due to the increasing efficiency of ion-aerosol attach-
ment. The combined effect of these two phenomena was a
concentration gap of charged particles at around 2–4 nm, ob-
served both in the simulation and in the measurements. A gap
in the number size distribution of charged particles below di-
ameters of a few nm is frequently seen in association with
measured new-particle formation events (e.g., Komppula et
al., 2007; Suni et al., 2008; Vana et al., 2008; Manninen et
al., 2009a).

While the overall evolution of the particle number size dis-
tribution was quite similar between the simulation and mea-
surements, also some differences can be observed. For ex-
ample, simulated concentrations of 10–20 nm particles were
somewhat smaller than those observed. A probable reason
for this is the slight underestimation of particle formation
or growth rates from the measurement data. In this respect,
the growth rates of the smallest particles are of specific im-
portance, since these particles are most vulnerable to scav-
enging by coagulation into larger particles (Kerminen et al.,
2004). Measurements at a fixed location are always affected
by transport phenomena, including the diurnal evolution of
the mixed layer height and advection of air masses with dif-
ferent aerosol characteristics. The former was apparently ac-
tive prior to local noon, whereas the latter may have caused
the minor but rapid change in the measured particle number
size distribution between about 14:00 and 15:00 LT. Our box
model is unable to imitate such transport phenomena.

In addition to assisting the interpretation of field mea-
surements, ion-UHMA can be used for many other pur-
poses. One such application is to estimate how accurately the

growth rates of sub-5 nm particles can be estimated from ion
spectrometer measurement using the available methods (Hir-
sikko et al., 2005), and whether new methods to determine
the formation and growth rates of freshly-nucleated particles
from measurement data are needed.

5.3 Nucleation rate parameterisations

Over the years, nucleation parameterisations have been de-
veloped for binary H2SO4-H2O nucleation (Russell et al.,
1994; Vehkam̈aki et al., 2002; Yu, 2008), ternary H2SO4-
H2O-NH3 nucleation (Napari et al., 2002; Merikanto et al.,
2007), and ion-induced nucleation (Turco et al., 1998; Mod-
gil et al., 2005; Yu, 2010). While all these parameterisations
reproduce quite accurately the nucleation rates predicted by
corresponding nucleation theories, they all have problems
when applied to large-scale atmospheric modelling. The ex-
isting binary H2SO4-H2O nucleation theories are not able to
reproduce nucleation events observed in continental bound-
ary layers (e.g., Spracklen et al., 2006; Jung et al., 2008;
Chang et al., 2009), in addition to which they are not consis-
tent with the most recent laboratory findings (see Sects. 3.1
and 3.3). Ternary H2SO4-H2O-NH3 nucleation mechanisms
may work reasonably well in sulphur-rich urban environ-
ments (Jung et al., 2008), but probably not in the global at-
mosphere (e.g., Lucas and Akimoto, 2004). In case of ion-
induced nucleation the main problem is the scarcity of suit-
able measurement data, which so far has hindered the proper
testing of this mechanism.

In EUCAARI, we concentrated on developing semi-
empirical nucleation parameterizations, in which the
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Finland.

nucleation rate is assumed to follow a simple power-law de-
pendence on the gaseous sulphuric acid (and organic vapour)
concentration. The reason for this is the accumulating evi-
dence that such relations appear to mimic atmospheric nu-
cleation much better than predictions based on classical nu-
cleation theories (Sect. 3.1; Weber et al., 1996; Sihto et al.,
2006; Riipinen et al., 2007; Kuang et al., 2008; Paasonen
et al., 2009). By combining measurement data from four
sites (Hyytïalä in Finland, Hohenpeissenberg and Melpitz
in Germany, San Pietro Capofiume in Italy), the following
eight candidate mechanisms were investigated (Paasonen et
al., 2010):

J2 = A[H2SO4] , (4)

J2 = K [H2SO4]2, (5)

J2 = Aorg
[
NucOrg

]
, (6)

J2 = Korg
[
NucOrg

]2
, (7)

J2 = As1 [H2SO4] +As2
[
NucOrg

]
, (8)

J2 = Khet [H2SO4] ×
[
NucOrg

]
, (9)

J2 = KSA1 [H2SO4]2+KSA2[H2SO4] ×
[
NucOrg

]
, (10)

J2 = Ks1 [H2SO4]2+Ks2[H2SO4] ×
[
NucOrg

]
+Ks3

[
NucOrg

]2
, (11)

Here,J2 is the formation rate of 2-nm particles, [NucOrg]
refers to the concentration of organic vapour(s) participating
in nucleation, andAi andKi are the first and second order
nucleation coefficients, respectively. At all the four sites, the
H2SO4 concentration was obtained directly from measure-
ments, whereas the organic vapour concentration was derived
from the closure of 2–4 nm particle growth rates. The val-
ues of the coefficientsAi andKi were determined for each
site separately, as well as for the whole data set together, by
fitting the regression formulae in question to the measure-
ment data points. The success of the fittings was evaluated by
looking at how well the measurement data points correlated
with the fittings and how scattered they were with respect to
the fitting.

The analysis showed that of the two mechanisms based
solely on the H2SO4 concentration, Eq. (5) was clearly the
better one and worked reasonably well for Hyytiälä, Melpitz
and San Pietro Capofiume. However, the values ofK giving
the best prediction forJ2 differed by more than a magnitude
between these three sites. Neither Eq. (4) nor Eq. (5) worked
for the Hohenpeissenberg data. Of the two mechanisms
based solely on organic vapour concentrations, Eq. (7) was
the best one in Hohenspeissenberg, whereas neither Eq. (6)
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nor Eq. (7) worked in the three other sites. The parameteri-
sations relying on different combinations of H2SO4 and or-
ganic vapours (Eqs. 8–11) displayed a variable success be-
tween the four sites. When trying to predict the value ofJ2
by using a single set of nucleation coefficient for all the sites
together, Eqs. (10) and (11) appeared to work the best, even
though none of the equations showed a superior performance
over the others (Paasonen et al., 2010).

There are two issues worth mentioning here. First of
all, the derivation of semi-empirical parameterizations, like
Eqs. (4) to (11), is always subject to uncertainties in mea-
sured quantities. For example, there is up to 50% uncertainty
in measured H2SO4 concentrations and even a slightly larger
one in [NucOrg] due to uncertainties related to determining
the growth rate of 2–4 nm particles (Paasonen et al., 2010).
Likewise, formation rates of 2-nm particles (J2) may be up
to a factor two lower or higher than the estimated ones due to
uncertainties in measurements and data analysis (Manninen
et al., 2010). Second, it is clear that Eqs. (4) to (11) are over-
simplifications of the physical and chemical factors influenc-
ing the nucleation rate. These include the ambient tempera-
ture and relative humidity and the stabilizing effect of vapors
other than H2SO4 and NucOrg, causing additional scatter in
measured data points. Such factors need to be investigated
more thoroughly in the future, along with the applicability
of the current parameterizations for conditions other than the
continental boundary layers.

All of the nucleation rate parameterisations presented
above (Eqs. 4–11) are similar to the standard formalisms of
chemical kinetics describing of second-order or pseudo-first
order reactions of atmospheric gases and aerosols (Pöschl et
al., 2007). Rate equations like Eqs. (10) and (11) are char-
acteristic for processes that can proceed via different mech-
anistic pathways and can be described by a linear combina-
tion of the rates of each pathway. This approach is consistent
with recent developments in the modelling of aerosol chemi-
cal transformation and aging by multi-component and multi-
phase processes (Shiraiwa et al., 2009, 2010). Equation (11)
is the most general formulation and seems most promising
as a basis for future developments aimed at a universally ap-
plicable parameterisation of aerosol nucleation rates across
different regions and regimes.

Knowledge of both sulphuric acid and organic vapour con-
centrations appears necessary to explain and parameterise at-
mospheric nucleation rates, and the field measurements are in
line with the most recent laboratory experiments discussed
in Sects. 3.1 and 3.3. The strong interplay between sul-
phuric acid and low-volatile organics in atmospheric nucle-
ation and subsequent particle growth is also apparent when
looking at long-term changes in aerosol concentrations over
Central Europe due to concomitant reductions in SO2 emis-
sions (Hamed et al., 2010).

5.4 Parameterising the apparent particle formation
rate

Direct application of nucleation rate parameterisations in
large-scale models is not possible, or at least not desirable,
for two reasons. First of all, most of the current global mod-
els simulating aerosol dynamics do not explicitly cover par-
ticle sizes relevant to nucleation. Second, the dynamics of
freshly-nucleated particles depends in a complicated way on
the interplay between their formation rate, their condensa-
tion growth and their scavenging by coagulation (Kerminen
et al., 2004; McMurry et al., 2005; Pierce and Adams, 2007).
Such interplay cannot be accurately handled in a large-scale
modelling framework due to excessive computational costs.

For the reasons highlighted above, the early dynamics of
nucleated clusters is usually parameterised in large-scale at-
mospheric models. In EUCAARI, a parameterisations that
relates the formation rate of particles of diameterdp (J (dp),
i.e. the apparent formation rate of particles at sizedp) and the
nucleation rate (Jnuc) was derived (Lehtinen et al., 2007):

J (dp) = Jnucexp

(
dnuc

m+1

[
1−

(
dp

dnuc

)m+1
]

CoagS(dnuc)

GR

)
. (12)

Here dnuc is the size of nucleated clusters, CoagS(dnuc) is
their coagulation sink, i.e. the rate at which they coagulate
with pre-existing aerosol particles, GR is their growth rate,
andm (∼1.5–2) is a constant that depends on the shape of
the particle number size distribution. Predictions by Eq. (12)
are similar to those by the widely-applied formulae proposed
by Kerminen and Kulmala (2002).

A drawback of Eq. (12), like in all other corresponding
parameterisations developed until now, is the neglect of nu-
clei self-coagulation. This process accelerates nuclei growth
and reduces their number concentration. Anttila et al. (2010)
derived an iterative procedure by which the effect of nuclei
self-coagulation on GR and CoagS can be taken into account
when applying Eq. (12). Comparisons to detailed numerical
simulations showed that the apparent particle formation rate
is affected by nuclei self-coagulation only when atmospheric
nucleation rates are exceptionally high (>10 cm−3 s−1 in the
free troposphere and>104 cm−3 s−1 in the polluted bound-
ary layer).

In order to apply the parameterisations by Lehtinen et
al. (2007) and Anttila et al. (2010) in atmospheric models, the
following quantities need to be known or derived from other
model variables: (i) the nucleation rate, (ii) the particle num-
ber size distribution, and (iii) the concentrations of vapours
that cause the fresh nuclei to grow in size. The first of these
requirements means simply that the aerosol formation rate
parameterisation cannot be used without a nucleation rate pa-
rameterisation. The second one implies that the representa-
tion of the particle size distribution in the model must allow
for determination of the coagulation sink. The third require-
ment is perhaps the toughest one: the model needs to have
some way of estimating the sulphuric acid concentration or,
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preferably, concentrations of all the vapours that contribute
significantly to the nuclei growth. Potential ways to deal with
condensing vapour concentrations in a large-scale modelling
framework have been discussed lately by Chang et al. (2009).

6 Concluding remarks

Our understanding of atmospheric nucleation relies essen-
tially on four very different sources of information: field
measurements, laboratory experiments, theoretical calcula-
tions and model studies. Until very recently, these ap-
proaches have not been able to provide a consistent picture
on atmospheric nucleation. Perhaps the most important prob-
lem in this regard has been the relation between the nucle-
ation rate and the identity and concentrations of nucleating
vapours. For example, the functional dependence of the nu-
cleation rate on the gaseous sulphuric acid concentration, as
observed in the ambient atmosphere, appeared very different
from that seen in most laboratory experiments, and neither
field nor laboratory data could be reconciled with existing
classical nucleation theories.

As demonstrated in this publication, the EUCAARI
project has significantly reduced the gap between the differ-
ent approaches used to tackle atmospheric nucleation. The
most important reason for this development has been the
enhanced capabilities to measure sub-3 nm particle popula-
tions, along with the extensive application of the new in-
struments in both laboratory and field. From a theoretical
point of view, quantum chemical calculations have eventu-
ally evolved to a stage, at which they can provide useful in-
formation to guide measurements and to constrain model ap-
proaches.

All the results obtained during EUCAARI indicate that
sulphuric acid plays a central role in atmospheric nucleation.
However, our most recent laboratory experiments and field
measurements show that also vapours other than sulphuric
acid are needed to explain the nucleation process. Such
vapours might be of organic origin, at least in continental
boundary layers. By stabilizing molecular clusters contain-
ing sulphuric acid, it has been speculated for quite some time
that basic vapours like ammonia would participate in atmo-
spheric nucleation. The laboratory experiments and quantum
chemical calculations made within EUCAARI give support
for the moderate involvement of ammonia in nucleation, and
indicate further that amines might be even more important
than ammonia in assisting atmospheric nucleation.

The field and laboratory data obtained during EUCAARI
demonstrate that the nucleation rate scales to the first or sec-
ond power of the nucleating vapour concentration(s). This
agrees with the few earlier field observations, but is in stark
contrast with classical thermodynamic nucleation theories,
such as binary sulphuric acid-water nucleation or ternary sul-
phuric acid-water-ammonia nucleation. The new findings,
while suggesting that the formation of very small molecu-

lar clusters drives atmospheric nucleation, are not sufficient
enough to reveal the actual nucleation mechanism.

The EUCAARI field measurements brought plenty of new
insight into the role of ions in atmospheric nucleation. One
important finding was that the average formation rate of
charged 2-nm particles varied very little, by roughly a factor
two, between the different measurement sites. This contrasts
to the average total formation rate of 2-nm particles which
varied by almost two orders of magnitude between the sites.
The contribution of charged particles to the total formation
rate of 2-nm particles was usually well below 10%, but it
showed substantial temporal variability both during a nucle-
ation event and between the different event days. In general,
our observations are indicative of frequent, yet moderate,
ion-induced nucleation usually outweighed by much stronger
neutral nucleation in the continental lower troposphere. No
evidence on the enhanced role of ion-induced nucleation in
the upper free troposphere, as suggested by some theoretical
studies, was obtained from our air craft measurements.

The most concrete outcome of the EUCAARI nucleation
studies are the new semi-empirical nucleation rate parameter-
isations, along with updated aerosol formation parameterisa-
tions. Although these parameterisations require theoretical
improvements, as well as intensive testing against both labo-
ratory and field data, we recommend that they should gradu-
ally replace the traditional binary and ternary nucleation pa-
rameterisations currently used in most atmospheric models.
From a global and Earth System modelling point of view, the
new semi-empirical nucleation parameterisations provide a
simple and effective tool, by which one can investigate the
sensitivity of the global aerosol system to atmospheric nucle-
ation and related emissions of precursor gases and primary
particles.

Several open questions remain that should be addressed
in the future. First of all, we do not really know whether
atmospheric nucleation is dominated by a single nucleation
pathway, or whether multiple different mechanisms are com-
peting with each other. Second, the relative importance of the
kinetic and thermodynamic factors controlling the nucleation
rate is unclear. Third, the identity and role of organic vapours
in the nucleation process are still unknown. Finally, although
ion-induced nucleation appears to be of minor significance in
continental boundary layers, this is not necessarily the case
in the free troposphere or above the oceans. In this regard,
there are very little experimental data on how ions interact
with neutral particles and clusters in the sub-2 nm size range.

In order to address the remaining knowledge gaps and
to quantify the relevant nucleation mechanisms, we need to
find out how the actual nucleation rate is connected with
the dynamics of the smallest atmospheric clusters. This
requires information on the chemical composition, physi-
cal properties and evaporation rates of these clusters. Es-
sential tools to tackle the problem are highly sensitive and
selective new instruments capable of operating at the sub-
2 nm size range, kinetic molecular-scale models, laboratory
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experiments, and various theoretical approaches relying on
both quantum chemistry and classical thermodynamics.
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P. P., O’Dowd, C. D., and Kulmala, M.: Laboratory verification
of PH-CPC’s ability to monitor atmospheric sub-3nm clusters,
Aerosol Sci. Tech., 43, 126–135, 2009.
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Sgro,L.A. and Ferńandez de la Mora, J.: A simple turbulent mixing
CNC for charged particle detection down to 1.2 nm, Aerosol Sci.
Tech., 38, 1–11, 2004.

Smith, J. N., Dunn, M. J., VanReken, T. M., Iida, K., Stolzenburg,
M. R., McMurry, P. H., and Huey, L. G.: Chemical compo-
sition of atmospheric nanoparticles formed from nucleation in
Tecamac, Mexico: Evidence for an important role for organic
species in nanoparticle growth, Geophys. Res. Lett., 35, L04808,
doi:10.1029/2007GL032523, 2008.

Spracklen, D. V., Carslaw, K. S., Kulmala, M., Kerminen, V.-M.,
Mann, G. W., and Sihto, S.-L.: The contribution of boundary
layer nucleation events to total particle concentrations on re-
gional and global scales, Atmos. Chem. Phys., 6, 5631–5648,
doi:10.5194/acp-6-5631-2006, 2006.

Spracklen, D. V., Carslaw, K. S., Kulmala, M., Kerminen, V.-M.,
Sihto, S.-L., Riipinen, I., Merikanto, J., Mann, G. W., Chip-
perfield, M. P., Wiedensohler, A., Birmili, W., and Lihavainen,
H.: Contribution of particle formation to global cloud conden-
sation nuclei concentrations, Geophys. Res. Lett., 35, L06808,
doi:10.1029/2007GL033038, 2008.

Stolzenburg, M. R. and McMurry, P. H.: An ultrafine aerosol con-
densation nucleus counter, Aerosol Sci. Tech., 14, 48–65, 1991.

Suni, T., Kulmala, M., Hirsikko, A., Bergman, T., Laakso, L.,
Aalto, P. P., Leuning, R., Cleugh, H., Zegelin, S., Hughes, D.,
van Gorsel, E., Kitchen, M., Vana, M., Hõrrak, U., Mirme, S.,
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