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Fluid-dynamical and microscopic description of
traffic flow: a data-driven comparison

BY PETER WAGNER*

Institute of Transportation Systems, German Aerospace Centre,
Rutherfordstraße 2, 12489 Berlin, Germany

Much work has been done to compare traffic-flow models with reality; so far, this has
been done separately for microscopic, as well as for fluid-dynamical, models of traffic flow.

This paper compares directly the performance of both types of models to real data.
The results indicate that microscopic models, on average, seem to have a tiny advantage
over fluid-dynamical models; however, one may admit that for most applications, the
differences between the two are small.

Furthermore, the relaxation times of the fluid-dynamical models turns out to be fairly
small, of the order of 2 s, and are comparable with the results for the microscopic models.
This indicates that the second-order terms are weak; however, the calibration results
indicate that the speed equation is, in fact, important and improves the calibration results
of the models.

Keywords: microscopic traffic-flow models; fluid-dynamical traffic-flow models; calibration

1. Introduction

Currently, there are about 100 traffic-flow models available; these fall into four
classes: microscopic, mesoscopic, fluid-dynamical and truly macroscopic models.
Several very good review articles exist, which describe them in more detail
and their relationship with each other (Chowdhury et al. 2000; Helbing 2001;
Nagel et al. 2003; Maerivoet & Moor 2005). On the most basic level, there are
microscopic traffic-flow models, which model each individual vehicle–driver unit
(or even more basic on the basis of a detailed vehicle dynamics). Mesoscopic
models still usually have individual vehicles, but they drop the interaction
between the vehicles in favour of an aggregated interaction between each vehicle
and an averaged field. This average field can be the density profile k(x , t), where k
is the vehicle density that depends on the position x and the time t, or the speed
profile v(x , t) on a link. (In physicists parlance, this is a mean-field approach.)
The fluid-dynamical models drop the individual vehicles in favour of fields and
write down dynamical equations for the time evolution of the density k(x , t) and
the speed v(x , t), while the macroscopic models, such as those used to do traffic
planning, very often lack a concise dynamical description in terms of differential
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equations—users of these models are interested in average values only. Therefore,
a whole road segment reduces to a so-called link performance function, relating
demand and travel time or travel costs.

For each of the four classes defined above, a further subclassification is
available. The microscopic models come as differential equations, time-discrete
update equations, or even fully discrete cellular automata models, each with its
own merits and short-comings. In the more physics-minded part of the traffic
community, there is also the further subdivision into one-phase, two-phase or
three-phase models. They differ in the details of the car-following dynamics: one-
phase models always have a stable fixed point in car following, in two-phase
models, there exist some values of the density where this fixed point becomes
unstable, creating start-and-stop jam waves, while three-phase models (see Kerner
2004) have many marginally stable fixed points in car following, even for the
same speed.

Fluid-dynamical models are classified into first-order models, which have only
one partial differential equation for the density and an algebraic equation for the
velocity, and second-order models, which have two partial differential equations
for the density and velocity. Rarely, third-order models have been defined in
the literature, where a third equation is constructed to describe the standard
deviation of the speed.

In principle, this broad range of descriptions may lead to very different levels
of realism for the different model classes. Therefore, this work tries to answer the
question of what is lost when going from the microscopic to an aggregated level?
To make this task manageable, the focus here is on a few representatives of the
microscopic and the fluid-dynamical model classes.

2. Description of data and models

(a) Data

The data were chosen from the California freeway I-80 near Berkeley, CA, USA.
The I-80 is a five-lane freeway, the data were chosen from a stretch without any
on- and off-ramps. Figure 1 displays the geometry of the study area. To compare
a model to reality, the following set-up is needed: two sets of data (from loop
detectors here) provide the inflow and the outflow boundary conditions, while
another detector in the middle of the study area measures the performance of
the models by comparing the simulation results at this detector with the real
data. The data from the detector located at the entry of the study area are used
to drive the inflow end of the simulation, while the data from the last detector
define the outflow condition. For a microscopic model, it is sufficient to use the
speeds from the downstream end, and the flows from the upstream end. For fluid-
dynamical models, both data (flows and speed) might be necessary; this depends
on the model.

The data are from a five-lane road and had been aggregated into one single
average speed and flow time series for the three detector locations in a time
interval of 15 s, see Brockfeld et al. (2005). When comparing fluid-dynamical
models with microscopic ones, this has the advantage that there is no need
to use the generalization of the fluid-dynamical or the microscopic models to
several lanes, which does not always exist. Of course, the microscopic models
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station 4 station 6 station 5 

Berkeley, CA Emeryville, CA

x = 0 m 1067 m 549 m 

Berkeley, CA to Oakland and San Francisco

Figure 1. Sketch of the detector locations on the I-80 near San Francisco, CA, USA. Only the data
of station numbers 4–6 have been used in the simulation study, with traffic flowing in the direction
to San Francisco. The study area was 1067 m long, and station number 5 detectors are located at
x = 549 m.

could be used to run a full multi-lane program; this work has also avoided this
in order to compare just the longitudinal behaviour. An additional advantage
gained by using aggregated data is that all models get the same input, and that
it is easier for the microscopic models to insert vehicles into the simulation area
with aggregated (smoothed) data. Very often, microscopic models do not allow
for the small headways observed in real data and therefore generate a jam at
the entrance of the simulation area since a following vehicle inserted with such a
small headway forces an emergency brake.

In addition to this, the data selected present a strong challenge to the models
since they display almost all types of different traffic-flow patterns, from free flow
to highly congested flow. This can be seen, for example, in the space–time plot in
figure 2, which has been generated with the help of the microscopic Stefan Krauss
(SK) model after successful calibration of the data.

The approach that has been followed here does have limitations. In particular,
more detailed questions regarding the microscopic interaction between vehicles
cannot be answered in this manner, or more precisely, only to the effect
they have on the macroscopic features. Owing to the nature of the chosen
data, the following approach only compares the macroscopic features of the
used microscopic models, i.e. their ability to reproduce the congestion patterns
observed in the data.

Nevertheless, from a statistical point of view, the approach taken here seems
valid: the dynamical complexity of a fluid-dynamical model (e.g. the numbers of
equations needed) is comparable to the number of vehicles in the simulation area.
In addition, the number of parameters is roughly the same, as long as it is assumed
that the microscopic parameters are the same for each vehicle (for the microscopic
case) or do not change with space and time (in the fluid-dynamical case).

(b) Models

Three microscopic and three fluid-dynamical models have been selected. It is
hoped that they are sufficiently general to represent a large class of different
traffic-flow models.

Phil. Trans. R. Soc. A (2010)
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Figure 2. Space–time plot of the simulation with a microscopic model, after successful calibration.
Shown is any 50th trajectory. It can be seen that there were two highly congested episodes over
the day, where the traffic jam spanned the whole study area.

(i) Microscopic traffic-flow models

The microscopic models to be used in the following are of three different
types: two fairly simple ones, and a much more complicated model as used in
the Massachusetts Institute of Technology Simulator (MITSIM; Ahmed 1999;
http://mit.edu/its/mitsimlab.html).

The first model to be used here is a generalization of the model introduced in
Krauß et al. (1997). While the original version of this model can be used with
a step size of 1 s only, the version below works for any time-step size Dt of the
update scheme,

vi(t + Dt) = min{vmax, vsafe, aDt + sa
√

Dtxi(t)}, (2.1)

with

vsafe = −bhpref +
√

(bhpref )2 + v2
i−1 + 2bgi . (2.2)

Here, vi is the speed of vehicle i and gi = xi−1 − xi − �i is the distance between
this vehicle and the lead vehicle i − 1; �i is the generalized vehicle length, i.e.
the physical length of the vehicle plus the distance between the vehicles in
a traffic jam. The parameters used in this model are the maximum possible
speed vmax of the vehicle, its maximum acceleration a and its maximum
deceleration b, the preferred time headway hpref and the acceleration noise sa.
A random number xi(t) is drawn in any time step and for any vehicle, which
makes the model a stochastic one. Note that sometimes the parameter hpref has
been interpreted as the reaction time; however, this is not the best possible
interpretation: for a time-step size Dt < hpref that is needed for the crash-freeness
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of the model, the time-step size Dt is the reaction time, while hpref is in fact
the equilibrium distance obtained when the driver does not need to accelerate
(vi(t + Dt) = vi(t)).

This model is in fact a kinematic model, since the speed is assigned directly
and there is no differential equation for the acceleration. Furthermore, it is the
model that is used in the Simulation of Urban Mobility (SUMO) open-source
simulator (http://sumo.sourceforge.net), and it shares some similarities with the
model introduced in Gipps (1981).

The second model class has been first described in Bando et al. (1995). It states,
that the reaction of the driver i depends only on the distance gi (net headway)
to the vehicle in front, and not (in addition) on the velocity difference between
the vehicles,

v̇i = 1
T

(F(gi) − vi). (2.3)

Here, the constant T is a relaxation time, which the current speed vi needs
to converge towards F(g). The function F(g) is sometimes named the optimal
velocity (OV) function, and it typically has a sigmoid shape: it starts out
slowly (for small distances g), then rises sharply (intermediate g), until it
finally saturates at the maximum speed vmax. Many different formulations are
available for the OV function. Here, the one introduced in Orosz et al. (2004)
will be used,

F(g) = vmax
(g/s)3

1 + (g/s)3
. (2.4)

Here, the parameter s is a scaling parameter of the OV function.
From a microscopic point of view, models where drivers react to changes in

distance only are definitely wrong, drivers react more strongly to the speed
difference between the vehicles. Nevertheless, these types of models are very
popular in the physical and mathematical literature because they are simple to
analyse and understand, and even analytical results can be derived.

In the case of this model, there is also a related fluid-dynamical model at
hand, which was first derived in Berg et al. (2000), therefore it will be named
the Berg, Mason & Wilson (BMW) model in the following. This is another virtue
of the OV models, it is fairly simple to connect such a microscopic model to its
macroscopic counterpart—often, the correspondence between a microscopic and
its fluid-dynamical counterpart is weaker than in this case.

These two microscopic models have a small number of parameters, the SK
model has six and the BMW model has four parameters, see table 1 for details.
This is no longer true for the third model, which is at the other end of the
complexity scale.

This last model is used in the MITSIM simulator (http://mit.edu/its/
mitsimlab.html); here, the version as described in Ahmed (1999) is used. It is
a three-regime model, where the different driving regimes depend on distance:
for small distances, drivers try to avoid crashing into the vehicle in front,
for intermediate distances they follow the vehicle in front (according to a
generalization of the General Motors (GM) model family defined in Gazis et al.
(1961)), while for large distances, they drive uninfluenced with their own preferred
maximum speed. The two thresholds that separate the three regimes are two time
headways hl, hu, each drawn from a truncated normal distribution (called N (m, s)

Phil. Trans. R. Soc. A (2010)

 on September 6, 2010rsta.royalsocietypublishing.orgDownloaded from 

http://sumo.sourceforge.net
http://mit.edu/its/mitsimlab.html
http://mit.edu/its/mitsimlab.html
http://rsta.royalsocietypublishing.org/


4486 P. Wagner

Table 1. The parameters of the three models. Implicit means that there is no explicit parameter
like amax or bmax, but it is built into the F(g) function. Complex means that more than a single
parameter is needed to describe this part of the model.

parameter description BMW SK MITSIM

vmax maximum speed yes yes yes
amax maximum acceleration implicit yes yes
bmax maximum deceleration implicit yes yes
� vehicle length yes yes yes
sa acceleration noise no yes complex
hpref preferred headway no yes yes
s scaling parameter of the OV function yes no no
T relaxation time yes no complex
Tff MITSIM free no no yes

(relaxation time in free flow)
a±, b±, g±, r± MITSIM follow no no yes

(exponents of the interaction term)
l± MITSIM follow no no yes

(acceleration scaling factors)
s± MITSIM follow no no yes

(acceleration noise)
sff MITSIM free no no yes

(acceleration noise in free flow)

in the following) with a certain width shl , shu . So, the model reads (where h = g/v
is the current time headway)

a =
⎧⎨
⎩

abrake, if h < hl,
afollow, if hl ≤ h < hu,
afree, if hu ≤ h,

(2.5)

with the acceleration function defined as

abrake =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
{
−bmax, ai−1 − (Dvi)2

2gi

}
, if vi > vi−1,

min
{
−bmax, ai−1 − bmax

4

}
, if vi ≤ vi−1,

(2.6)

afollow = l±
v

b±
i−1(t − t)

gg±
i (t − t)

kr±(t − t)|Dvi(t − t)|a± + N (0, s±) (2.7)

and afree = 1
Tff

(vmax − v(t − t)) + N (0, sff ). (2.8)

In equation (2.7), the sign ± stands for the different signs of the speed difference
Dvi = vi−1 − vi . The variable k is an approximation to the density in front of the
vehicle, the variable t is the reaction time, which has been set to zero in the
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calibration below. Note in addition, that this model assumes that the driver can
estimate the acceleration of the lead driver, which in general seems difficult for
human drivers to do.

(ii) Fluid-dynamical traffic-flow models

The arguably most simple of all fluid-dynamical descriptions is the kinematic-
wave model (Lighthill & Whitham 1955; Richards 1956). It is the consequence of
vehicle conservation, which was stated first by Lighthill & Whitham (1955),

vtk(x , t) = −vxq(x , t). (2.9)

In this equation (2.9), k(x , t) denotes the density of vehicles as a function of space
x and time t, while the q(x , t) is the traffic flow, i.e. the numbers of vehicles that
pass a given cross section of the road under consideration. Within this theory, it
is assumed that the speed field v(x , t) of the traffic stream adopts immediately
to the density k. Since traffic flow, density and speed are related by the relation
q = kv, this means that the traffic flow is a function of density q(k), which is called
the fundamental diagram of traffic flow. In the original paper, see Lighthill &
Whitham (1955), the fundamental diagram is a simple triangular function: for
traffic density below a critical density, the observed flow increases with density
linearly, with the slope equal to the maximum speed of the traffic stream, while
above the critical density, the traffic flow declines with density until it finally
reaches zero. This time, the slope of the decline is the speed of the backward-
travelling jam wave. Note, however, that more general fundamental diagrams may
exist, or even none at all (Kerner 2004).

The model in equation (2.9) is already an acceptable description of traffic
flow from a macroscopic point of view. However, in cases where traffic flow is
highly dynamic, e.g. in the case of stop-and-go waves, this description had to
be enhanced by an additional differential equation that describes the dynamics
of the velocity field v(x , t). This then defines the second-order fluid-dynamical
equations of traffic flow; the earliest one was given in Payne (1971),

vtk(x , t) = −vxq(x , t) (2.10)

and

vtv(x , t) = 1
T

(V (k(x , t)) − v(x , t)) − c2

k(x , t)
vxk(x , t), (2.11)

where V (k) is an assumed equilibrium speed–density relationship and (c2/k)vxk
is a term that describes anticipation of the driver to the density downstream
of the current location x . The function V (k) has an intimate relationship with
the OV function introduced above in the case of the BMW model, in fact for
homogeneous traffic (no acceleration), the two coincide and are equal to the
fundamental diagram introduced above. The density is the inverse of the average
distance plus the average vehicle length, k = 1/(〈g〉 + 〈�〉).

The approach of Payne (1971) will not be used here, instead more modern
approaches will be considered. Note that there is an ongoing discussion (see Zhang
2009 for an overview) centred around the drawbacks of most of the second-order
models (which was initiated by Daganzo 1995).

In numerical analyses, these partial differential equations need to be
discretized, and these discretizations are used in the rest of this work.
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To start, first the kinematic-wave model will be used in the approximation
derived in Daganzo (1994), the cell transmission (CT) model. As for all fluid-
dynamical models, the street is divided into cells of a certain length L; usually,
L may be selected in the range between 50 and 500 m. At each time t, and within
each cell n, there is a certain number nn(t) of vehicles present, which can be non-
integer values. Each cell also has a maximum capacity Nn, i.e. it cannot hold
more vehicles than that. The number of vehicles that can be transferred between
a cell n and its downstream cell n + 1 in a time step Dt is then determined by the
following relationship:

qn→n+1 = min{S(nn), R(nn+1)}, (2.12)

where S(·) and R(·) are the sending and receiving functions, which describe what
the upstream cell can send, and what the downstream cell is able to receive.
These two functions become fairly simple if the cell length is chosen to be
L = vmaxDt, where vmax is the maximum speed of the stream, and if the underlying
fundamental diagram of the modelled system is triangular,

S(nn) = nn (2.13)

and
R(nn+1) = w(Nn+1 − nn+1). (2.14)

In this equation, w is the speed of the backward-running jam wave, normalized
to the maximum speed, w = w̃/vmax.

As discussed above, the CT model as a first-order fluid-dynamical model
assumes that the speed adapts instantaneously to a change in density, a fact
that is apparently not true. Therefore, generalizations to this model also include
a dynamical equation for the speed. Here, two approaches will be used that are not
affected by the criticism in Daganzo (1995). The first one is a model described in
Hilliges & Weidlich (1995) (called HILL in the following), and a model described
in Aw & Rascle (2000) (called AR in the following), developed as an explicit
mathematical approach to respond to Daganzo (1995) and to counteract the
drawbacks of the second-order fluid-dynamical approaches. The HILL model is
defined similar to the CT model,

Lk̇n = kn−1vn − knvn+1 (2.15)

and

v̇n = 1
T

(V (kn) − vn) + vn

2L
(vn−1 − vn+1), (2.16)

but with an explicit second-order term for the speed relaxation, which is again the
term similar to the OV function of the BMW model. The variable kn is different
from the CT model, it is now the traffic density in each of the cells.

The final model to be considered here is the AR model, see Aw & Rascle (2000).
It is defined by

vtk(x , t) = −vxq(x , t) (2.17)

and
vtv(x , t) = −v(x , t)vxv(x , t) + k(x , t)p′(k(x , t))vxv(x , t). (2.18)
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These three models (CTM, HILL, AR), together with their explicit discretization
as described in the respective articles (Daganzo 1994; Hilliges & Weidlich 1995;
Aw & Rascle 2000), are used as representatives of the fluid-dynamical class
of models.

(c) Boundary conditions

As mentioned already, the boundary conditions need to be given by the external
data, therefore the model under consideration is driven by the external data. The
data from loop detectors provide traffic flow qin(t), qout(t) and speed vin(t), vout(t)
as primary measured variables, from which the third variable for the description of
traffic flow, the density, can be derived. (Strictly speaking, computing the density
by k = q/v is only allowed if the traffic stream is homogeneous.) A microscopic
model definitely needs the inflow qin(t), the speed is not really needed since it
is a consequence of the vehicle dynamic downstream of the insertion point and
the insertion mechanism itself. The insertion is done as follows (see Namazi et al.
(2002) and references therein for a discussion of insertion rules): at any time step,
when a vehicle must be inserted (according to the data), the last vehicle in the
system must be considered; if it is far enough within the system so that the newly
inserted vehicle is not influenced by its downstream predecessor, the new vehicle
can be set at the beginning of the study area. This is done with the maximum
speed possible, and the vehicle will adapt, after a few seconds, to the speeds
within the study area. If the last vehicle is too close, the newly inserted vehicle
will be set a certain distance upstream of the study area, which, for this purpose,
must be part of the simulation area—the condition is that the distance had to be
chosen such that the new vehicle can be inserted with a speed larger or equal to
the speed of its predecessor. If there is a mismatch between the simulation and
the data, vehicles at the entrance may ‘pile up’, leading finally to a bad measure
of performance for this simulation run and this model; this may be corrected by
adopting the parameters of the model until a good fit is reached and little or no
vehicles jam at the entrance.

The downstream condition is simpler to realize: it has to be ensured that the
vehicles leave the simulation area with a speed as large as the measured one
vout(t). This is simple to accomplish, and it is important: if the study area is
homogeneous and if there is no bottleneck in it (as is the case for the I-80 study
area used in this work), it is impossible with most microsimulation models to
generate a traffic jam within the study area. Therefore, the jams observed in the
data are imported, i.e. they are generated downstream (in this case, by the toll
station of the San Francisco Bay Area bridge) and travel backwards into the study
area—the reduced speeds at the onset of such a jam are exactly the mechanism
that transport them into the study area.

In principle, also the traffic flow qout(t) at the outflow could have been used as a
boundary condition. This is not as straightforward as using the speeds since it
has to be ensured that no more than the measured flow qsim,out(t) ≤ qout(t) leaves
the study area. This can again be reached by an appropriately set speed limit,
or by changing the preferred headway of the leading vehicle that slows it down,
or, finally, by using a virtual traffic light (Brockfeld et al. 2003) that enforces
the condition qsim,out(t) ≤ qout(t). However, this causes a strong disturbance in
the traffic flow and should be done only if nothing else works, e.g. if speed data
are not available.
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(d) Calibration/validation: optimization issues

Any model contains a set of parameters p := {pi} that can be used to adopt
to the scenario at hand. In general, running each of the models with its set
of parameters, and with the boundary conditions set by the empirical data, it
produces a speed measurement vsim

k (p) at the loop detectors of station number 5,
which can be compared with the real data v

emp
k ,

e(p) =
M∑
i=k

(
vsim

k (p) − v
emp
k

v
emp
k

)2

, (2.19)

which defines the root mean square (r.m.s.) error with M being the number of
data points. Other measures of performance (Brockfeld et al. 2003, 2005; Toledo
et al. 2007) might be used and may influence the outcome of the calibration task,
see Brockfeld et al. (2004), Toledo et al. (2004), Hoogendoorn & Ossen (2005)
and Ossen & Hoogendoorn (2007). Note that for the models considered here, a
homogeneity assumption has been made: all vehicles for the microscopic models
share the same set of parameters, and the same is true for the fluid-dynamical
models: all parameters are kept constant over the simulation time (one day) and
the simulation area.

To find the optimum set of parameters for each model, the equation (2.19)
has to be minimized with respect to this set of parameters p. For this nonlinear
optimization, several tools are available (e.g. Press et al. 2007). The results of
this minimization, of course, are now the optimized parameters for the scenario
at hand. So, in a final step, it is usually necessary to apply a model with a
fitted set of parameters to a different scenario and see how well it fits there—
without adapting the parameters once more. This final step is called validation,
and usually the validation results are another 5 per cent worse than the calibration
results (Brockfeld et al. 2003, 2004, 2005). Within this work, only calibration
results will be provided, since a direct comparison between fluid-dynamical and
microscopic models is undertaken. A typical result is shown in figure 3; here,
the time series of the data at station number 5 is compared with the simulation
results after successful minimization.

As can be seen in figure 3, but much more clearly in the space–time plot
in figure 2, the situation at this test site is highly congested, causing a strong
challenge for all the models. All the simulations were run over the whole day,
in order to collate different situations that have to be described by the models.
Furthermore, four additional days of data have been analysed, which yield quite
comparable results.

3. Results

The results are displayed in figure 4. It can be seen that the best model is a
simple microscopic model; its r.m.s. error is around 11 per cent, which is a fairly
good value in comparison with the results obtained for more microscopic car-
following data (Brockfeld et al. 2003, 2004). From Brockfeld et al. (2005), it is
known that other simple microscopic models can also reach this r.m.s. error. In
general, there is a tendency that models with fewer parameters perform better
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Figure 3. Time series of the data (light grey), and two of the six models (SK: grey, HILL: black)
investigated here.
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Figure 4. The r.m.s. error of the six models, with the fluid-dynamical ones in black and the
microscopic ones in grey. Note that the results have not been corrected for the number of parameters
by using, for example, Akaike’s information criteria (Akaike 1974) as an additional calibration
objective.

than models with more parameters; this might be an effect of the limitations in
the optimization routines—they do not deal very well with the high-dimensional
optimization, since it is very probable that a large parameter space is riddled with
local minima (see especially the results obtained for the MITSIM model). The
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CT model is the weakest among the fluid-dynamical models and it seems that a
simple second-order term improves the fluid-dynamical model. Nevertheless, the
improvement is not very large, even the CT model seems to gather most of the
patterns displayed by the traffic flow in this study area.

One of the surprising results is the magnitude of the relaxation parameter T
of the fluid-dynamical models. On average, it is somewhere between 1 and 3 s. It
turns out that this result seems to be generally correct, as a more detailed analysis
for the HILL model and the analysis below demonstrates. The relaxation time
for this model where the objective function e(p) is minimal is around T = 2.8 s.
This is in line with the numbers obtained for the microscopic models, which are
typically around 1–2 s, as well as for the relaxation times and for the preferred
headways. For a discussion on the interplay between reaction times, relaxation
times and preferred headways, see Kesting & Treiber (2008).

Finally, note that reaction times are much more difficult to assess. In normal
driving circumstances, drivers anticipate quite correctly what will happen during
the next couple of seconds, and therefore do not need to react in the classical
sense of being surprised and need some time to cope with a new un-anticipated
event. There are even examples, e.g. when drivers approach a red traffic light,
where reaction times are negative since the following driver starts braking before
the lead driver.

(a) Relaxation times

So far, the analysis of relaxation times has been completely based on the
calibration results. Here, another data source of single vehicle data will be used
to support the results of the calibration by an empirical analysis. By looking
at single-vehicle data, the question of how fast does the speed change from one
vehicle to the next one in a traffic stream may be asked. This is relevant for the
models above, since they have been driven by exactly this kind of data—only
changes in speed that are within the data trigger changes in the models, and do
therefore influence the relaxation time of the models.

To answer this question, for each pair of vehicles following each other, a kind of
acceleration (called the acceleration index in the following) may be computed. Let
vi be the speed of the ith vehicle in a traffic stream and vi+1 be the speed of the
following vehicle, which follows with a time headway of hi . Then, the acceleration
index (the letter ai = (vi+1(t + ti) − vi(t))/ti is used here to differentiate it from
normal accelerations) can be defined and analysed. It turns out that a is relatively
constant: in most cases, the acceleration index values are bounded to −1 ≤ a ≤
1 m s−2, and acceleration values larger than |a| > 2 could not be observed in this
dataset.

This analysis is summarized in figure 5, where the averaged acceleration
index between subsequent vehicles passing a double-loop detector is plotted.
Therefore, typical acceleration values are quite small, and from the simple
differential equation v̇ = (V (·) − v)/T , it follows that T should be a function of
the difference between the actual speed of the vehicle and the equilibrium speed
V (·). For the data that has been analysed here, mostly small speed differences
between subsequent vehicles |Dv| ≤ 5 m s−1 are observed. The acceleration index
a ≤ 2 m s−2 is also bounded, so that the empirical relaxation time T ≈ Dv/a is of
the order of 2–3 s, in line with the calibration results above.
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Figure 5. Contour plot of the acceleration values as a function of vi(t) and vi+1(t + hi). Almost
all pairs vi(t), vi+1(t + hi) are distributed along the diagonal, except for larger speeds where the
distances between the vehicles grow, and therefore larger speed differences can occur.

4. Conclusions and outlook

It has been shown in this work that fluid-dynamical and microscopic models
yield quite comparable calibration results, where the simpler microsimulation
models display a small advantage over the best fluid-dynamical models within this
study. Therefore, it could be expected that microsimulation models which model
the traffic flow as multi-lane flow might yield further improvements, since they
can deal easier with inhomogeneities in the driver population. In most practical
applications, the accuracy achieved here might be sufficient so that the analyst
can chose any model, with a certain preference for the simpler ones.

There are several directions for generalization of these results. First of all,
different places should be looked at, especially interesting are longer stretches
of road where more details on the evolution of traffic-flow patterns can be
observed, which will create stronger challenges for the models than the very short
stretch used here. The modelling of the parameters as distributions is another
important issue that brings with it the question of which is the correct measure
of performance in such a situation? Even the current models, especially the ones
with a stochastic update rule already create a difficult task for the optimization
routines, which deal better with noise-less objective functions.

Furthermore, in addition to one-lane microscopic models, multi-lane-based
models should be tested to see whether they could improve the results obtained
so far. In any case, it is important to always use the comparative approach of
comparing different models with the same type of data since it might be very
hard to use absolute values.

Interestingly, the general results (11–15% r.m.s. error) are well within the
bounds given by earlier results. It is not clear right now whether this is a kind
of limit to how well a traffic-flow model can approximate real traffic data. In the
long run, it is highly interesting to find out the limits in accuracy of traffic-flow
modelling.
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