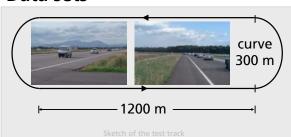


German Aerospace Center

Institute of **Transport Research**


Contact persons: Elmar Brockfeld Peter Wagner

Calibration and Validation of microscopic traffic flow models

Ideas

» Compare microscopic traffic flow models by calibrating & validating them with the same recorded data sets » Calibration and validation in a very microscopic way analysing the time-series of the headways

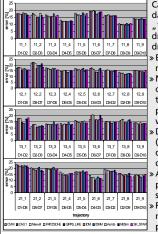
Data sets

- » Data from ten GPS-equipped cars driving on a 3km test track in Hokkaido, Japan (1)
- » GPS positions in intervals of 0.1 second
- » First car performed certain "driving patterns" (see next point) on the straight sections
- » Driving patterns are: constant speeds of 20, 40, 60 and 80 km/h; driving in waves varying from about 25 to 65 km/h (half, single, and double waves on a straight 1200 meter long section)
- » The data of four experiments, each with ten cars driving 15-30 minutes, are used for the analyses

Simulation set-up

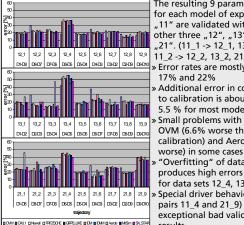
- » For each simulation run one vehicle pair is considered
- » The first car is updated with the speeds as recorded in the data
- » The second car is updated following the rules of the traffic model under consideration
- » For error measurement the percentage error e is calculated by taking the absolute differences of the observed gaps

 g_obs to the simulated gaps g_sim and relating it to the mean gap in each of the observed data sets, respectively, over the complete simulation time T.


- » To find the optimal parameters for the models a gradient free (direct search) optimisation technique is used named downhill simplex (2)
- » The optimisation process is started with random initialisation several times to avoid local minima.

Tested Models

- » 4 parameters, CA0.1 ("cellular automaton model") (3)
- » 7 p, SK_STAR (model based on the SK-model by S. Krauss) (4)
- » 4 p, OVM ("Optimal Velocity Model") (5)
- » 6 p, IDM ("Intelligent Driver Model") (6)
- » 7 p, IDMM ("Intelligent Driver Model with Memory") (7)
- » 7 p, Newell (CA-variant of the model with more variable acceleration and deceleration by G. Newell) (8, 9)
- » 6 p, GIPPSLIKE (basic model by P.G. Gipps) (10)
- » 6 p, Aerde (model used in the software INTEGRATION) (11)
- » 13 p, FRITZSCHE (model used in the british software PARAMICS; similar to what is used in the german software VISSIM by PTV) (12)
- » 15 p, MitSim (model used in the software MitSim) (13)


Calibration results

Validation results

Calibration of 10 models with 36 data sets (four experiments "11", "12", "13" and "21", each with 9 driver pairs; "D" = Driver; leading driver is always "D1"):

- Error rates from 9% to 24 %, mostly between 12% and 17 %
- No model appears to outperform the others regularly: the average error the best model produces is 15.14 %, that of the worst model 16.20 %
- Diversity in the driver behaviour (5%-15%) is bigger than diversity of the models (average differences per data set is 2.5 %) All models share the same problems with the same data
- For these data sets models with more parameters do not produce better results

The resulting 9 parameter sets for each model of experiment "11" are validated with the other three "12", "13" and "21". (11_1 -> 12_1, 13_1, 21_1; 11_2 -> 12_2, 13_2, 21_2 ...):

- Error rates are mostly between 17% and 22% Additional error in comparison
- to calibration is about 3.2% to 5.5 % for most models Small problems with the models OVM (6.6% worse than calibration) and Aerde (7.6%
- "Overfitting" of data set 11_4 produces high errors up to 55% for data sets 12_4, 13_4 & 21_4 Special driver behaviour (driver pairs 11_4 and 21_9) because of exceptional bad validation results

Conclusions

- » Models with more parameters must not necessarily produce better results than simpler models
- » Using only few data for calibration can cause "overfitting", thus other data sets can not be reproduced well
- » From this microscopic point of view the cal/val errors of 15-25% seem hard to be reduced further, no matter what model is used

References

- Sugiyama, Physical Review E, 239-253, **51**, 1999 eview E, 1805-1824, **62**, 2000.

DLR - IVF Rutherfordstraße 2 D-12489 Berlin Tel: (+49)30-67055-231 (+49)30-67055-237 Fax:(+49)30-67055-202 E-Mail: Elmar.Brockfeld@dlr.de Peter.Wagner@dlr.de