elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

A comprehensive wheel-terrain contact model for planetary exploration rover design optimization

Leite, Alexandre Carvalho und Schäfer, Bernd (2010) A comprehensive wheel-terrain contact model for planetary exploration rover design optimization. In: Proceedings. Joint 9th Asia-Pacific ISTVS Conference and Annual Meeting of Japanese Society for Terramechanics, 27. Sept. - 30. Sept. 2010, Sapporo, Japan.

[img] PDF - Nur DLR-intern zugänglich
4MB

Kurzfassung

In the context of the European Space Agency's (ESA) Aurora Programme there are two near future robotic missions which will provide survice mobility with wheeled rovers: ExoMars and Next Lunar Lander - NLL. These vehicles are the main motivation of this work; thery are supposed to drive with high performance over rough terrains containing basically rocks, sand and inclined slopes. Our contact model aims to describe the interaction between each rigid wheel of a rover and three different terrain types: 1) rigid surface, 2) complex-shaped rigid objects (representing rocks), and 3) soft soil. Transition among these three "meta-states" is permitted for each wheel of a multi-wheeled rover. The uneven terrain is smothed on the space domain giving a continuous three-dimensional surface; the discontinuities are depicted by the rigid objects, and its collision is detected by the proper computation of the contact plane and the contact forces. The uneven terrain can be as rigid as the rocks (modeled by Coulomb's friction law) or as soft as sand (modeled by Bekker's equations). Optimization of the mechanical structure is a crucial task in the design phase to achieve high performance. However, there are three essential features which are required to perform batch simulations with the optimization process: stability, robustness and speed of the simulations. These required features have guided the selection of the used impact/rolling modes. The internal states and its transitions are thoroughly explained to clarify the main difficulties in the batch simulations. The contact model is partially validated by drawbar-pull experiments in soft soil testbed with a breadboard model of the ExoMars rover. Future advanced versions of the contact model are focusing on flexible wheel modeling, and first attempts in that direction are also provided and commented.

elib-URL des Eintrags:https://elib.dlr.de/66474/
Dokumentart:Konferenzbeitrag (Vortrag, Paper)
Titel:A comprehensive wheel-terrain contact model for planetary exploration rover design optimization
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Leite, Alexandre CarvalhoNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Schäfer, BerndBernd.Schaefer (at) DLR.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2010
Erschienen in:Proceedings
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Contact modeling, multibody simulation, planetary rover optimization
Veranstaltungstitel:Joint 9th Asia-Pacific ISTVS Conference and Annual Meeting of Japanese Society for Terramechanics
Veranstaltungsort:Sapporo, Japan
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:27. Sept. - 30. Sept. 2010
HGF - Forschungsbereich:Verkehr und Weltraum (alt)
HGF - Programm:Weltraum (alt)
HGF - Programmthema:W SY - Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Weltraum
DLR - Forschungsgebiet:W SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):W - Robotische Explorationstechnologie (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (bis 2012) > Robotersysteme
Hinterlegt von: Klauer, Monika
Hinterlegt am:22 Nov 2010 14:21
Letzte Änderung:22 Nov 2010 14:21

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.