elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Kontakt | English
Schriftgröße: [-] Text [+]

A Hierarchical Spatio-Temporal Markov Model for Improved Flood Mapping Using Multi-Temporal X-Band SAR Data

Martinis, Sandro und Twele, André (2010) A Hierarchical Spatio-Temporal Markov Model for Improved Flood Mapping Using Multi-Temporal X-Band SAR Data. Remote Sensing, 2 (9), Seiten 2240-2258. DOI: 10.3390/rs2092240.

Dieses Archiv kann nicht den gesamten Text zur Verfügung stellen.

Offizielle URL: http://www.mdpi.com/2072-4292/2/9/2240/pdf

Kurzfassung

In this contribution, a hybrid multi-contextual Markov model for unsupervised near real-time flood detection in multi-temporal X-band synthetic aperture radar (SAR) data is presented. It incorporates scale-dependent, as well as spatio-temporal contextual information, into the classification scheme, by combining hierarchical marginal posterior mode (HMPM) estimation on directed graphs with noncausal Markov image modeling related to planar Markov random fields (MRFs). In order to increase computational performance, marginal posterior-based entropies are used for restricting the iterative bi-directional exchange of spatio-temporal information between consecutive images of a time sequence to objects exhibiting a low probability, to be classified correctly according to the HMPM estimation. The Markov models, originally developed for inference on regular graph structures of quadtrees and planar lattices, are adapted to the variable nature of irregular graphs, which are related to information driven image segmentation. Entropy based confidence maps, combined with spatio-temporal relationships of potentially inundated bright scattering vegetation to open water areas, are used for the quantification of the uncertainty in the labeling of each image element in flood possibility masks. With respect to accuracy and computational effort, experiments performed on a bi-temporal TerraSAR-X ScanSAR data-set from the Caprivi region of Namibia during flooding in 2009 and 2010 confirm the effectiveness of integrating hierarchical as well as spatio-temporal context into the labeling process, and of adapting the models to irregular graph structures.

Dokumentart:Zeitschriftenbeitrag
Titel:A Hierarchical Spatio-Temporal Markov Model for Improved Flood Mapping Using Multi-Temporal X-Band SAR Data
Autoren:
AutorenInstitution oder E-Mail-Adresse der Autoren
Martinis, SandroSandro.Martinis@dlr.de
Twele, AndréAndr.Twele@dlr.de
Datum:17 September 2010
Erschienen in:Remote Sensing
Referierte Publikation:Ja
In Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:2
DOI :10.3390/rs2092240
Seitenbereich:Seiten 2240-2258
Status:veröffentlicht
Stichwörter:Markov random fields (MRFs); hierarchical marginal posterior mode (HMPM) estimation; irregular graph; spatio-temporal context; TerraSAR-X; automatic thresholding; generalized Gaussian distribution; change detection; flood mapping; flood possibility mask; Namibia
HGF - Forschungsbereich:Verkehr und Weltraum (alt)
HGF - Programm:Weltraum (alt)
HGF - Programmthema:W EO - Erdbeobachtung
DLR - Schwerpunkt:Weltraum
DLR - Forschungsgebiet:W EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):W - Vorhaben CHARTA & EO-Krisenlagezentrum (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Zivile Kriseninformation und Georisiken
Hinterlegt von: Sandro Martinis
Hinterlegt am:23 Nov 2010 13:53
Letzte Änderung:18 Sep 2013 03:03

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Copyright © 2008-2013 Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.