

Theory and Application of Electrochemical Impedance Spectroscopy for Fuel Cell Characterization

<u>Wagner N., Schiller G., Friedrich K.A.</u> Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) Institut für Technische Thermodynamik Pfaffenwaldring 38-40, 70569 Stuttgart

Presentation outline

- → Introduction
 - ✓ Motivation
 - → Types of Fuel Cells
 - → Experimental set-up for different types of FCs
- Modeling of fuel cells with equivalent circuits and microstructure of fuel cells electrodes
- ✓ Impedance models of porous electrodes
- → Different applications of EIS in FC research
 - ✓ Contributions to performance loss of PEFC
 - → EIS on segmented SOFC
 - → EIS measured on Ag-gas diffusion electrodes

Conclusion and Outlook

Motivation

Characterization of Fuel Cells by Electrochemical Impedance Spectroscopy:

- Determination of electrode structure and reactivity, separation of electrode structure from electrocatalytical activity
- Determination of electrochemical active surface (locally resolved)
- Determination of reaction mechanism and separation of different overvoltage contributions to the fuel cell performance loss
- Determination of degradation mechanism of electrodes, electrolyte and other fuel cell components (bipolar plates, end plates, sealings, etc.)
- Determination of optimum operation condition (e.g. gas composition, temperature, partial pressure), cell design (flow field) and stack design

Schematic representation of main types of fuel cells

Schematic representation of main types of fuel cells

LR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Experimental set up and cells used for EIS

Segmented and single PEFC cell (polymer electrolyte)

Fuel "half" cell with

liquid electrolyte

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Test cell for SOFC (short stack) (Solid Oxide Electrolyte)

Fuel cell overvoltage and current density / voltage characteristic

Electrochemical Impedance Spectroscopy: Application to Fuel Cells

in der Helmholtz-Gemeinschaft

Electrochemical Impedance Spectroscopy: Application to Fuel Cells

Schematic representation of the different steps and their location during the electrochemical reactions as a function of distance from the electrode surface

 $\mathbf{Ox} + \mathbf{ne}^{-} \leftrightarrow \mathbf{Red}$

N. Wagner, K.A. Friedrich, *Dynamic Response of Polymer Electrolyte Fuel Cells* in "Encyclopedia of Electrochemical Power Sources" (Ed. J. Garche et al.), ISBN-978-0-444-52093-7, Elsevier Amsterdam, Vol.2, pp. 912-930, 2009

für Luft- und Raumfahrt eV in der Helmholtz-Gemeinschaft

Overview of the wide range of dynamic processes in FC

in der Helmholtz-Gemeinschaft

Bode representation of EIS measured at different current densities, PEFC operated at 80°C with H_2 and O_2 at 2 bar

R für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

PEFC: Schematic Diagram (cross section)

Common Equivalent Circuit for Fuel Cells

Common Equivalent Circuit for Fuel Cells

Common Equivalent Circuit for Fuel Cells

SEM micrograph of PEFC elctrode (Pt/C+PTFE)

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

TEM micrograph of Carbon Supported Platinum Catalyst

SEM-picture of Silver-Gas Diffusion Cathode

States Contract Hard

SEM picture of PTFE/C powder

States and the second sec

Field of application of porous electrodes

Water purification and treatment (Bio)-Organic synthesis

Batteries and supercaps

Nyquist representation of Impedance of RCtransmission line, model of a flooded pore

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

- r = pore radius
- L = pore lenght

Nyquist representation of porous electrode impedance with faradaic impedance element

$$r = 3 \Omega$$

$$c = 500 \text{ mF}$$

$$r_{ct} = 1.5 \Omega$$

Agglomerated Electrodes

Hierarchical model (Cantor-block model)

M. Eikerling, A.A. Kornyshev, E. Lust *J. Electrochem. Soc.*, **152** (2005) E24

S.H. Liu, *Phys. Rev. Letters*, **55**(1985) 5289 T.Kaplan, L.J.Gray, and S.H.Liu, *Phys. Rev.* **B 35** (1987) 5379

Cylindrical homogeneous porous electrode model (H. Göhr)

H. Göhr in Electrochemical Applications/97, www.zahner.de

Electrochemical Impedance Spectroscopy: Experimental Set-up

Bode diagram of measured EIS at different cell voltages

EIS at Polymer Fuel Cells (PEFC):

Contributions to the cell impedance at different current densities

EIS at Polymer Fuel Cells (PEFC):

Contributions to the overal U-i characteristic determined by EIS

Current density / mAcm⁻²

Evaluation of EIS with the porous electrode model Summary of current density dependency of pore resistance elements

DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

States Contract Has

Segmented SOFC cell design with segmented bipolar plates

OCV distribution of ASC at 800°C and simulated reformate (50% H_2 + 50% N_2 + 3% H_2O , 0.08 SlpM/cm² air)

1.067

1.059

1.051

1.044

1.036

1.028

1.060

fuel gas

Air

Produced water: S4: 0.61%, S8: 0.72%, S12: 0.78%, S16: 3.30%

EIS at OCV, ASC with segmented cathode, 77.44 cm²

Bode Diagram of EIS, measured at PEFC, 75°C, 0.5 Acm⁻² Variation of gas flow rates

EIS on PEFC, 80°C, 5 A, cathode fed with different gas composition, λ =1.5, N111 IP CCM (Ion Power Inc.)

Reactive Mixing and Rolling (RMR) GDE Production Technique for AFC Electrodes

Schematically representation of cell voltage and potentials in an alkaline fuel cell

Current density / potential characteristic

DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

SEM picture of cross section of silver membrane with 0.2µm pores diameter

CV's (1 mV/s) from -700 mV to 450 mV vs. Hg/HgO bei 80°C in 10 M NaOH, O_2

Vergleich Impedanzspektren, aufgenommen in 10 M NaOH bei 80°C, -700 mV vs. Hg/HgO nach 60 Minuten

Equivalent circuit with relaxation impedance and measurement at -700 mV, 1.2 µm membrane

in der Helmholtz-Gemeinschaft

Conclusion

- Determination of the individual potential losses during fuel cell operation
- → Determination of degradation mechanism and performance loss
- Improvement of fuel cell performance and stability by understanding instead of trial and error
- → Determination of critical operation conditions of fuel cells

Thank you for the attention!

