elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Kontakt | English
Schriftgröße: [-] Text [+]

Numerical Predictions of the Effect of Rotation on Fluid Flow and Heat Transfer in an Engine-similar Two-pass Internal Cooling Channel with Smooth and Ribbed Walls

Schüler, M. und Dreher, H.-M. und Neumann, S. O. und Weigand, B. und Elfert, M. (2010) Numerical Predictions of the Effect of Rotation on Fluid Flow and Heat Transfer in an Engine-similar Two-pass Internal Cooling Channel with Smooth and Ribbed Walls. In: Proceedings of ASME Turbo Expo 2010 (ASME G), Seiten 1-13. ASME Turbo Expo 2010, June 14-18, 2010, Glasgow, UK.

[img] PDF - Nur angemeldete Benutzer - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
2MB

Kurzfassung

In the present study, a two-pass internal cooling channel with engine-similar cross-sections was investigated numerically. The channel featured a trapezoidal inlet pass, a sharp 180° bend and a nearly rectangular outlet pass. Calculations were conducted for a configuration with smooth walls and walls equipped with 45° skewed ribs (P/e = 10, e/dh = 0.1) at a Reynolds number of Re = 50,000. The present study focused on the effect of rotation on fluid flow and heat transfer. The investigated rotation numbers were Ro = 0.0 and 0.10. The computations were performed by solving the Reynolds-averaged Navier-Stokes equations (RANS method) with the commercial Finite-Volume solver FLUENT using a low-Re k-ω-SST turbulence model. The numerical grids were block-structured hexahedral meshes generated with POINTWISE. Flow field measurements were independently performed at DLR using Particle Image Velocimetry. In the smooth channel rotation had a large impact on secondary flows. Especially, rotation induced vortices completely changed the flow field. Rotation also changed flow impingement on tip and outlet pass side wall. Heat transfer in the outlet pass was strongly altered by rotation. In contrast to the smooth channel, rotation showed less influence on heat transfer in the ribbed channel. This is due to a strong secondary flow field induced by the ribs. However, in the outlet pass Coriolis force markedly affected the rib induced secondary flow field. The influence of rotation on heat transfer was visible in particular in the bend region and in the second pass directly downstream of the bend.

Dokumentart:Konferenzbeitrag (Paper)
Titel:Numerical Predictions of the Effect of Rotation on Fluid Flow and Heat Transfer in an Engine-similar Two-pass Internal Cooling Channel with Smooth and Ribbed Walls
Autoren:
AutorenInstitution oder E-Mail-Adresse der Autoren
Schüler, M.ITLR, Univ. Stuttgart
Dreher, H.-M.ITLR, DLR
Neumann, S. O.ITLR, Univ. Stuttgart
Weigand, B.ITLR, Univ. Stuttgart
Elfert, M.DLR, Martin.Elfert@dlr.de
Datum:Juni 2010
Erschienen in:Proceedings of ASME Turbo Expo 2010
Referierte Publikation:Ja
In ISI Web of Science:Ja
Seitenbereich:Seiten 1-13
Status:veröffentlicht
Stichwörter:CFD, Numerical Flow Simulation, Internal Cooling, Turbine Blade Cooling, Rotational Effect, Ribbed Walls, Heat Transfer
Veranstaltungstitel:ASME Turbo Expo 2010
Veranstaltungsort:Glasgow, UK
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:June 14-18, 2010
Veranstalter :ASME
HGF - Forschungsbereich:Energie
HGF - Programm:Rationelle Energieumwandlung (alt)
HGF - Programmthema:E VG - Verbrennungs- und Gasturbinentechnik (alt)
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E VG - Verbrennungs- und Gasturbinentechnik
DLR - Teilgebiet (Projekt, Vorhaben):E - Gasturbine (alt)
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Antriebstechnik > Fan- und Verdichter
Hinterlegt von: Rosemarie Fox
Hinterlegt am:17 Sep 2010 11:52
Letzte Änderung:12 Dez 2013 21:01

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Copyright © 2008-2013 Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.