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Abstract

Intelligent Transportation Systems (ITS) became a fast moving field of research in the
last decades, in particular in the context of continuously growing mobility and a high
employment of resources starting from energy and material consumption to travel time
and finally the human life. As it has already been experienced in other application
areas, the introduction of communications technology is able to bring a revolutionary

change in structures and behaviors long-believed to be carved in stone.

The main idea behind this thesis is the usage of information not as a mere placeholder,
e.g. a field in a static message, but actively utilizing its content and dependencies.
This requires an estimation of the actual worth of a single piece of information for the
entity itself and the entities which are in communication range. This worth has to be
the essential driver for the cooperative situation estimation. The active utilization of
information and its cooperative dissemination provides the entities the opportunity to

become situation aware and detect hazardous or inefficient situations early in advance.

Since information always has a degree of uncertainty which is inherent to information in
the real-world problem domain, as we are confronted with in I'TS, probabilistic methods
will be applied to model situation-relevant information. Conditional probability distri-
butions in state transition models make for the evolvement of the situational information
with the progress of time and handle causal dependencies between situational informa-
tion. Together with a utility-based decision-making process dynamic probabilistic causal
decision networks provide the functionality to select optimal actions given sequences of

inaccurate and incomplete evidences.

This thesis provides concepts and strategies that push forward the exploitation of
information in a cooperative way within a probabilistic framework that allows to make
various kinds of decisions with maximum utility. For the evaluation of the proposed
concepts, the exemplary application Cooperative Adaptive Cruise Control (CACC) has
been implemented on the basis of a particle filter which is used for the situation
estimation. Initial simulations provided promising results and hence constitute a solid

basis for future work in the field of Cooperative Situation Awareness in Transportation.
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1 Introduction

Measured in time of transport and
communication, the whole round
globe is now smaller than a small
European country was a hundred
years ago.

John Boyd Orr (1880-1971)

1.1 Intelligent Transportation Systems

Human life in these days is decisively influenced by mobility. In 2006 a European citizen
travelled 12838 km in average by motorized means of transport [73]. This amounts to
35 km per day and a mean velocity of more than 2 km/h during the hours awake. The
total travel distance constantly increased over the last decades with a growth of about
1.8% per year [73, 16, 40] (see figure 1.1). The total amount of passengers transport is
made up of different modes of transport: passenger cars, buses and coaches, airplanes,
railway, powered two-wheelers, tram and metro as well as ships. With 72.7 % (2006)
passenger cars can be considered as the lion’s share [73]. The second largest share is
assumed by air transport with 8.6% which finally superseded buses and coaches from
2005 to 2006 (8.3%). If the modal split is analysed over travel time instead of travel
distance (with mean velocities from [232]), the mode made up of buses and coaches still
has longer periods of use with 17.2% in contrast to air transport with 0.6%. Passenger
cars again have the largest share (see figure 1.1).

Besides passenger transport, the transportation of goods is also dominated by road
transport with a share of 45.6% in contrast to 37.5% for maritime transport and 10.5%
for rail transport [73]. The total amount of freight kilometers amounts to more than
4100 billion kilometers per year (2006) and is subject to constant increase of around
2.8% per annum [73] (see figure 1.2).

Independent of the mode and type of transport it can be said that mobility has been
embedded to our modern life as nothing of the sort. Its continuous increase (see figure
1.1 and 1.2) which could be observed over the last decades in industrialized nations
shows its exceptional significance. Mobility and transportation is often considered as
one of the major cornerstones of industrialization and in this sense can even serve as
an indicator for economic wealth [232] as figure 1.2 illustrates.

The rapid growth in mobility which took place over the last decades also entails
severe problems. An increasing traffic density, vehicles moving with high speeds and
larger travel distances cause a static increase in transportation costs, traffic fatalities
and environmental pollution [40]. All of these factors have to be considered for all
modes of transport.



2 1.1: Intelligent Transportation Systems

Whereas the evolution of transportation of the last two centuries was mainly driven
by the development of suitable drive and material technology, there is significant evi-
dence [72, 17, 20, 42] that the upcoming development in transportation will be influenced
to a large extent by information and communications technology (ICT). There-
fore, “one is obliged to question whether this new era, with information and knowledge
as important resources and with the world-wide introduction of ICT, will alter the
‘rules’ of the ’transportation age’ ” [51]. Whereas in the past, vehicles primarily were
seen as autonomous entities sharing merely the same infrastructure network, in the
future vehicles are expected to share also information and knowledge. Thus, questions
regarding a distributed information network become relevant and have to be solved.
Certainly, one of the most fundamental questions is how to organize information within
the distributed network of vehicles maybe also including intelligent infrastructure or
even pedestrians which get involved by crossing the vehicle infrastructure.
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Figure 1.1: Passenger travel distance by mode of transport and modal split over distance
and travel time (1995-2004) (based on EC Statistical Pocketbook [16])

There are two fundamental concepts in this expectation of future transport which
are information and communications. The application of these concepts constitutes
the future vision of transportation which often is referred to as Intelligent Trans-
portation Systems (ITS) . According to [1] “ITS is the integration of information
and communications technology with transport infrastructure, vehicles and users”,
thereby “ITS improves transportation safety and mobility and enhances productivity
through the use of advanced information and communications technologies” 7).
In this sense I'TS brings together and fundamentally dovetails the two research areas of
information theory and communications theory in the context of transportation.
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Figure 1.2: Variation of freight and passenger transport compared with Gross Domestic
Product in the European Union (1995-2005) (source: EC Panorama of Transport [40])

1.2 Cooperative Situation Awareness in Road
Transport

Between all modes of transport since decades road transport has the highest growth
rates in the industry nations (more than 6% for road freight transport in Europe in 2007
[187] and more than 4% in passenger transport in Europe in 2006 [73]). The modal split
assigns more than 55% in freight transport and more than 80% in passenger transport to
road transportation [73]. In the emerging nations the road transport mode is expected to
have an even higher growth rate, relative as well as absolute, forecast for the upcoming
years [232]. Thus, road transport will be one of the major modes of transportation all
around the world for the next decades although a softening of the modal borders and
an increased relevance of inter-modality of transportation is to be anticipated [232].

Dedicated improvements of road infrastructure by the integration of information
and communications technology to specific use cases has already taken place. Examples
are the deployment of induction loops, Variable Message Signs (VMS) and centralized
Traffic Management Centers (TMCs), all inter-connected by fast wired communication
networks [192, 71, 126]. This enables that information of the current traffic density
gathered by induction loops is communicated to TMCs and further to VMSs in order
to optimize traffic efficiency from the infrastructure perspective.

This first step of incorporating information and communications technology to trans-
portation infrastructure has the advantage that all communicating nodes are static
and known a priori, network design is dedicated to the specific fields of application
and central control instances can easily be deployed. All this is not the case for the
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deployment of information and communications technology to moving vehicles which is
a further promising point of action for I'TS. The communication network topology of
communicating road vehicles is a priori unknown, subject to continuous and fast changes
and ubiquitous control infrastructure is complicated to deploy and cost-intensive. Thus,
new concepts to tackle these problems are strongly required.

The integration of information and communications technology into the vehicles
in form of improved driver assistance systems is often referred to as Advanced Driver
Assistance Systems (ADASs). In contrast to conventional driver assistance systems
(e.g. cruise control or the Anti-lock Braking System (ABS)) which merely take vehicle-
internal information such as speed or wheel slip into account, ADASs have the objective
to support the driver in her/his task of leading the vehicle taking into account an
extended sensing horizon including additional information of the current surrounding
[235, 260, 213]. Thus, information is gathered and communicated beyond the borders of
the individual vehicle and utilized in a decentralized way in order to optimize application
utilities.

Extending a system for distributed information opens a completely new field of trans-
portation research related to the concepts of shared understanding [246] and exploiting
the real worth of information®. The omnipresent focus of the system on this worth
of information is one of the major contributions of this work and requires a general
rethinking of present approaches. The information per se is worthless if its meaning
and implications are unknown. The information always has to be contextualized to
the situation of concern. The contextualization can then be used as an enabler to
estimate the actual worth of the information. The concept of utilizing distributed
information and treating the information with its actual worth for all entities in the
cooperation is denoted as Cooperative Situation Awareness. A driver assistance
system which uses this concept can be termed as Cooperative Situation-Aware Driver
Assistance System.

Cooperative Situation Awareness exploits distributed information beyond the
borders of single entities and actively treat information with its worth accord-
ing to the situation of concern 2

The main concept which makes up this work hence is the usage of information
not merely as a placeholder for one of many measurement values or data fields in a
message but with all its implications involved and the worth it has for the entity and all
other entities in the cooperation. Thereby, “the use of information is influenced by the
degree of uncertainty in the available knowledge and by the communication flows between
knowledge producers and users”[51]. Consequently, uncertainty has to be actively taken

IThe term “worth of information” will accompany the reader throughout this whole work and will
occur at various locations. The term is used as a general expression for the actual usefulness of a piece of
information comparable to the importance or relevance of a piece of information in a specific situation.
It shall not be mixed with the terms “mutual information” (see chapter 4.1), “value of information”
(see chapter 4.2) or “weight of evidence” (see chapter 2.3.3 and 4.3) which describe concrete algorithms
to determine the worth of information

2In the remainder of this work we will use such a “blue-box” notation for summarizing statements
that have a high worth of information for the reader
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into account for a proper situation estimation and if efficient communication is required;
in particular, if the communication is not dedicated to a specific field of application and
has to be flexible and extendible by design. It has to be operable in situations with
sparse traffic and dense traffic as well as in situations with low penetration rates and
high penetration rates. Communication has to be feasible for safety-critical applica-
tions as well as efficiency or comfort related applications, with high or low external
disturbances, and many more factors that might completely change the communication
characteristics. This implies that the communication has to adapt itself according
to the current bandwidth, latency, reliability, etc. of the communication channel by
distributing information with respect to its worth. As an example, an information with
high worth, e.g. a collision warning, shall not be cut back due to information with low
worth for the receivers, e.g. position information with high uncertainty or a traffic jam
warning which has already been repeated dozens of times.

In this case the traffic jam warning which in general is of high importance was
contextualized to the situation where already several identical message have been sent.
This significantly reduces the importance of a further traffic jam warning. Throughout
this thesis it will be seen that information which initially is considered as worthless
becomes of high importance and on the other hand information which is considered
as highly important becomes irrelevant. This results from the contextualization of the
information to the current situation which can be totally different for different entities
or different instants of time. The worth of the information therefore has to be one of
the major drivers for data-distribution and decision-making with utility maximization.

With these concepts this work contributes to the fields of:

e Uncertainty Management (chapter 2): How to model and work with inaccuracy
and incompleteness of information?

e Information Management (chapter 3): How to use, how to organize, how to
incorporate information in a dynamic system environment?

e Utility Management (chapter 3): How to deliberate and optimize utilities which
are gained by the selection of proper actions?

e Information Exchange and Radio Resource Management (chapter 4): How to
identify information with high worth? How to exchange information taking into
account its worth? How to optimize the radio resource usage considering the
worth of information?

The concepts which are presented in this thesis have a generic character and shall
serve as an enabler for various kinds of applications for future I'TS. These include for
instance cooperative collision avoidance, cooperative black spot warning, cooperative
traffic jam detection and many more [55, 19]. It is important to note that this work
will not focus on a concrete application but will show the benefit of information and
communications theory applied to the transportation domain with the actual worth of
information taking into account inherent uncertainty. An application which has been
identified as one of the most potential is Cooperative Adaptive Cruise Control (CACC)
[211, 258, 257] and thus is used in many sections of this work to motivate and exemplify
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the developed concepts and algorithms. CACC combines the usage of information from
in-vehicle target tracking sensors, i.e. radar, lidar or camera, and position information,
e.g. from GPS or Galileo, which is wirelessly communicated from the target vehicle.
From a technological perspective this combination is perfectly suited to evaluate and
characterize the worth of information which depends on the sensor measurements from
both kinds of sensing technologies. Thus, CACC has been chosen as the application to
evaluate the theoretical concepts on a concrete problem domain.

1.3 Outline

This thesis is structured in 7 chapters. The structure has been designed with the
objective for each chapter to be mostly self-contained. Thus, each chapter can be read
more or less independently of the other chapters. Required cross-references are marked
explicitly. Since no comparable comprehensive work in this field has been done so far,
state of the art analyses are broken down to specific sub-problems and are contained
in the respective sections. Each chapter starts with a short introduction and ends with
concluding remarks and evaluations. A short outline of each chapter is given in the
following.

In order to work with information and its implications, a model to express knowledge
and explicate its uncertainty has to be developed. Chapter 2 introduces concepts to
model situations using probabilistic causal networks. The fundamentals of inference are
shown and state of the art in situation modelling will be compared with probabilistic
causal networks.

Chapter 3

Additional
evidence for a
timely, accurate,
reliable situation
estimation &
decision making

Situation
Model

Communications

Chapter 4

Exchange of
information w.r.t.
its worth for the
overall situation
estimation &
decision making

Figure 1.3: Circular integration of information and communications

Chapter 3 is named Forward Integration: From Evidence to Decisions and describes
the path to reach an optimal decision given a set of evidences from in-vehicle sensors
and/or via communications, thereby taking into account the diverse sources of un-
certainty (see figure 1.3). Therefore, concepts such as sensor fusion, dynamic system
algorithms and decision-making based on probabilistic causal models will be introduced
and their application to the problem domain elaborated. Descriptive examples from
different kind of ITS applications are used to illustrate the concepts.
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Chapter 4 named Backward Integration: Decisions for optimized evidence exchange
presents diverse approaches to reach an optimized exchange of evidence based on the
actual knowledge within the situation model. The identification of the worth of infor-
mation which an entity possesses or would like to possess is the main driver to optimize
the communication of evidence between the distributed nodes (see figure 1.3). Different
strategies to calculate the worth of information are introduced and their application to
message prioritization, congestion control and opportunistic routing are elaborated.

After the introduction of the theoretical work, the developed concepts will be pre-
sented as parts of a prototype implementation of CACC. Chapter 5 will provide an
introduction, requirements analysis and detailed system description for CACC which
incorporates the concepts introduced in the previous chapters.

A performance analysis of the proposed algorithms will be presented in chapter
6. The chapter begins with a description of the used simulation environment, the
models and parameter settings. Subsequently, a detailed comparison of algorithms
in different reference scenarios will be given and the performance of the proposed
algorithms evaluated. Some of the analyses are specific to the CACC application, in
particular if a closed simulation loop is required to assess the whole system performance.

The final conclusions and an outlook to future work will be given in chapter 7.
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2 Situation Modelling

The theory of probabilities is at bottom only common sense
reduced to calculus; it makes us appreciate with exactitude
that which exact minds feel by a sort of instinct without
being able oftentimes to give a reason for it. It leaves no
arbitrariness in the choice of opinions and sides to be taken;
[...] Thereby it supplements most happily the ignorance
and weakness of the human mind.

Pierre Simon, Marquis de Laplace (1749 -1827)

The main objective of a driver assistance system is to support the driver in her /his task
of driving a vehicle. In order to achieve this in an optimal way, the driver assistance
system needs to perceive and assess the environment, inform or warn the driver or
perform certain actions on the environment at least as good as the driver in the adopted
functions. For instance, a longitudinal control function which has to decide on the
optimal acceleration of the vehicle needs to be aware of the headway character of the
vehicle:

e [s there another vehicle in front?

e What is the safe following distance?

e What is the maximum speed limit on this road?

e Are there any other hazards such as icy pavements or blind bends?
e ...

Figure 2.1 shows an extract of relevant parameters which have an influence on the
decision for longitudinal acceleration. Taking all these parameters into account will
result in a quite complex system which is not located within an insulated “sandbox”
but has to act in an environment with lots of peculiarities. The following listing shows
how a driver assistance system relates to its environment according to the classification
proposed by Russel and Norvig in [226]:

Fully Observable vs. Partially Observable
If every piece of information is given in the required accuracy and completeness
which is relevant to perform the tasks and achieve the envisaged objectives,
the environment is called fully observable. An example for a fully observable
environment is a chess game where every player is able to fully observe the
positions of all pawns on the board. If this is not the case the environment can be
categorized as being merely partially observable. Tasks of transportation such as
longitudinal control often are only partially observable due to information which
cannot be sensed (e.g. nearby vehicle which are not within line of sight) or can
only be sensed with an insufficient level of detail (e.g. nearby emergency vehicle

9
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Figure 2.1: Influencing parameters for longitudinal acceleration

can only be heard but is not within line of sight). Therefore, this information has
to be refurbished or has to be inferred from afferent information, i.e. information
that has some influencing relation (e.g. pavement condition derived from weather
information).

Static vs. Dynamic

During the runtime of the system, the environment can be subject to change. If
the environment changes even without any interaction of the system, the environ-
ment is called dynamic. If on the other hand the environment only changes upon
an action performed by the system, then the environment is called static. Systems
in transportation normally have to cope with dynamic environments which will
change due to actions of other entities, e.g. other vehicles, or due to natural
physical variances, e.g. changing weather conditions or daylight intensity, which
are totally independent of any short-term interactions of entities.

Deterministic vs. Stochastic

If in a changing environment the subsequent state of the environment is a
deterministic function of the current state plus some additional fully observable
input parameters, then the environment can be characterised as deterministic,
otherwise it is stochastic. Tasks in transportation often are stochastic problems.
Subsequent states are strongly influenced by the behavior of other entities which
cannot be fully observed, such as the intention of the driver of the preceding
vehicle or pedestrians unanticipatedly crossing the street.

Discrete vs. Continuous

A description of the environment can be discrete or continuous. Whereas the
former describes the environment in quantized stages, the latter allows a continu-
ous description without any quantization. The distinction can be met for various
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scales such as time, occurrence probability, intensity, etc. Tasks in transportation
often require continuous descriptions or at least a discretization with extremely
small quanta in order to cope with small changes and adequate actions respec-
tively. In particular, continuous or at least short consecutive episodes in time are
often required.

Episodic vs. Sequential

A further classification is the timely awareness range. If the system takes only the
situation in the current episode into account neither looking backward on previous
situations nor looking forward to upcoming situations, this is called episodic. In
episodic environments the action performed in each episode depends merely on the
episode itself. Otherwise it is called sequential. Tasks in transportation normally
have to be regarded as sequential due to protracted process behavior, especially in
maneuvering (e.g. an overtaking maneuver) and navigation (e.g. optimal wayfind-
ing). In this examples single-shot actions will probably not succeed because they
have to be coordinated over a duration of more than one episode.

Single Agent vs. Multi-Agent

In contrast to a single agent environment, a multi-agent environment is influenced
by more than one agent. In this context an agent is a system that acts based on
observations and performs actions on the environment. Among each other, agents
can act in a competitive way or cooperatively. Whereas in the former an agent
tries to optimize its own objectives without taking into account objectives of other
agents, cooperative agents try to optimize global objectives which are valid for
all or at least a subset of all agents. Systems in transportation normally have to
act in a multi-agent environment with lots of other agents in their vicinity. Their
coordination can be competitive or cooperative. Competitive objectives are for
instance the acquisition of a parking lot. Safety-related objectives are normally
regarded in a cooperative way.

Thus, systems in transportation normally have to cope with partially observable, dy-
namic, stochastic, continuous, sequential, multi-agent environments. The systems them-
selves are part of this environment and have to interact with it accordingly. Such kind of
systems are often characterized by acting intelligent or being intelligent. “Intelligence
may be defined as the ability to adapt behavior to meet goals in a range of environments”
[81]. Hence, an “intelligent system adapts to its environment [which may only be
partially observable] by predicting future events, controlling its actions in light of those
predictions, and revising its bases for making predictions in light of feed-back on the
degree to which it is achieving its goals” [81]. “Intelligence is concerned mainly with
rational action” [226] in uncertain environments. “A system is rational if it does the
‘right thing,” given what it knows”, or “takes the best possible action in a situation”[226]
according to what it perceived from the environment.

Based on the above environment description, the remainder of this chapter provides
the general system concept which serves as a basis for the consecutive chapters. First,
an analysis and evaluation of different system design concepts will be given. Based on
the evaluation, a suitable situation model will be elaborated. After that, alternative ap-
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12 2.1: System Design

proaches will be shown and their specific deficiencies with the above given environment
characteristics will be studied.

2.1 System Design

As a first step of a driver assistance system relevant information has to be observed,
explored or acquired. This step is called observation or perception [213]. The
information can be updated automatically or can be polled otherwise. That strongly
depends on the technology and the control flow used in the acquisition and processing
step in the source of information. Generally, a source of information is any device
which is capable of generating a piece of information which characterizes one or more
aspects of the environment. Among others, sensors are one of the most important
sources of information in the ITS context but also a map data base or a user specifying
its preferences can be considered as a source of information.

The output of an information source is either used directly as raw measurements or to
infer higher-level information. If used as raw measurement, the measurement value may
serve as an input for hard-coded decision-making as it is done in lots of “simple systems”
such as powering on the light by pressing the light switch or adjusting the frequency
of the windshield wipers according to the output of a rain sensor. In the context of
artificial intelligence or cognitive systems [110, 264, 83| these systems are called simple
reflex systems [2206], stimuli-response systems or event-response systems. They behave
according to a simple if-then-rule used for instance in procedural programming or Event-
Condition-Action (ECA )-rules used in active data base management systems [61] or in
event-driven architectures:

if something happens then perform a certain action

A rule set for longitudinal acceleration processed by a simple reflex system may be for
instance:

e “if car-in-front-is-braking then initiate-braking” and
e “if car-in-front-is-accelerating then initiate-acceleration”

Simple reflex systems react on relevant external events, so called triggers, which allow
these systems to be used in dynamic environments which change and generate events
even without any direct interaction of the system.

This kind of system design has the big advantage that it is simple, traceable and less
resource-consumptive. It performs well in simple environments but using simple reflex
systems in complex environments will lead to a plethora of rules with complex conditions
consuming lots of resources in terms of memory and processing power. Furthermore, it
may lead to unwanted actions in stochastic (e.g. what is the best action if the vehicle
in front is accelerating but the road surface is icy and the impact of an acceleration
is unclear?) or partially observable situations (e.g. what is the best action if it is not
clear whether the preceding car is on the same or on an adjacent lane?).

The reason for making inappropriate decisions hence is the fact that the environ-
ment is only partially observable and has stochastic dynamics. In this case sensor
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measurements cannot serve as a direct trigger for decision-making in complex systems
without further considerations. In general, for most applications in the context of ITS
raw sensor measurements do not directly provide the information which is required to
fulfill the objectives. Accordingly, a thermometer measures the thermodynamic state,
i.e. the average kinematic energy per degree of freedom of particles, at the location of
the sensor. Although such a sensor output provide useful information in heat-sensitive
systems, driver assistance systems will not directly profit from such information in
most cases. For the longitudinal control function the relevant temperature information
is required for the headway in order to estimate the braking distance and not at the
location where the thermometer is mounted. And it is not the temperature that is
relevant but the pavement condition in order to determine the friction coefficient which
is required for the calculation of the safe following distance. Of course, the temperature
at the location of measurement and the location of interest is highly correlated but the
assumption that it is equal may cause wrong situation estimations and fundamental
fallacies.

In most cases the raw sensor measurement can therefore merely serve as an indicator
for the estimation of relevant parameters. Thus, questions have to be answered such
as “If a thermometer shows 0 centigrades, what is the temperature of the road surface
in a distance of 50 m?” or “what is the most likely pavement condition?” or even
“what is the probability of an increased wheel slip?”. An improvement of simple reflex
systems can thus be achieved by the integration of additional ontological knowledge
which reproduces the coherence of given input and required output parameters in order
to get a better picture of the situation which caused the observation, the so called
causative situation [216]. The coherence relations are specified within a situation
model or world model [161]. Decision-making systems that use such a model are called
model-based systems [226] or knowledge-based systems [29].

By using the situation model the system is able to initiate appropriate actions also
in stochastic and partially observable environments. Based on this situation model the
system is also able to infer what the effect of a certain action on the environment will
be, thus being able to infer consequences of actions (see figure 2.2). This is especially
important because intelligent systems in transportation “do not only form an image of
reality through observation, they can act on reality and change it through their activity
because [they] [...] are part of the material world” [85].

To act on the reality requires prediction capabilities of anticipated situations lying in
the future and also requires taking into account previous situations and decisions made
in the past. This can be used in sequential environment analysis to plan actions or
action sequences over a longer period of time pursuing a certain goal. Such systems are
called goal-based systems [226]. Goal-based systems are required for driver assistance
for maneuvering or navigation where it is required to perform a sequence of actions.
An overtaking maneuver for instance requires to change the lane, accelerate and return
to the original lane. Systems that do not take into account goals might estimate the
situation as too risky after changing the lane hence returning immediately back to the
original lane without finishing the overtaking maneuver.

Goal-based systems may be effective in reaching intended goals but often they are
not capable of making efficient decisions because their decisions are not based on an
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14 2.1: System Design

optimization criterion. In order to be efficient an agent needs to specify a performance
metric that allows to order the set of alternative actions. A performance metric is for
instance the wutility which is a measure of the achievement of the envisaged objectives.
Different actions contribute more or less to the achievement of the objectives. Systems
that try to optimize this utility are called utility-based systems. A common scale
to relate different alternatives is money (e.g. in Dollars $ or Euros €) because utility-
based systems are often used in economical evaluations. Alternatively, the amount of
time needed to reach the destination, the amount of C'O; emissions generated or the
number of unnecessary decelerations can be used as performance metric. A further
advantage of using utilities is the possibility of pursuing several objectives in parallel
which might be contradicting, as for instance safety and efficiency. The most safe state
will be in most cases to stop the vehicle but this also will be the most inefficient action
in terms of time-to-destination because the destination will never be reached. This is of
particular importance in multi-agent cooperative environments where goals of multiple
agents have to be coordinated cooperatively in order to reach a global optimal utility.
Pursuing the utility of a single agent (e.g. fastest time to destination) will probably only
reach a local maximum if inspected in the whole set of agents (e.g. all other vehicles
have to slow down in order to clear the way).
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Figure 2.2: Model-based agents perceive their environment by various sources of infor-
mation, infer possible situations and act appropriately

Especially systems that have to interact with the environment, i.e. that observe their
environment and change the environment by their actions, have to take into account
more than just what is perceived. They have to cope with observation errors, fallacies
in observation, and they have to predict what their actions will entail because after
they performed their action there is no way to turn back time and undo the performed
action. Actions have an irrevocable bearing on the environment and have to be carefully
chosen, especially in safety critical systems.
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As a consequence, the intelligent system cannot be implemented as a simple reflex
system. Instead it has to use a model of the situation which enables a detailed estimation
of the environment, thereby avoiding observation fallacies, and taking into account the
consequences of actions with regard to the targeted objectives. The following section
will thus introduce the fundamental concepts to model situations which are required
for a model-based system for future I'TS. Further extensions for dynamic and flexible
incorporation of various sources of information and decision-making will be provided in
the next chapter.

2.2 Situation Model

When modelling a real-world situation, we have to distinguish between two universes:
the intellectual universe (or intellectual world) and the physical universe (or
physical world) [59]. Whereas the intellectual universe is a purely intellectual con-
struct of the intelligent system, “the physical universe, on the other hand, just does
its own thing, entirely ignorant of, and careless of, any of our intellectual theories”
[59]. The objective of an intellectual universe which is modelled within the intelligent
system is to represent the physical universe in the relevant aspects. The relevance of
an aspect arises from the application domain which renders aspects of the physical
world more or less relevant. For a more detailed inspection of aspect and relevance the
reader is referred to [246]. The intellectual world hence merely reflects a subset of the
physical world appropriate to the application domain. This is the so called intellectual
universe of discourse. The only links between both universes are the observations
which can be gathered from the physical world. These links can be used to inject
evidence to the intellectual world which then, based on these evidences, attempts to get
a clear picture of the physical world.

Whereas the physical world is unique and unambiguous given, the intellectual world
does not need to be unambiguous - and in most cases it actually is not - and thus
includes a certain amount of uncertainty. This uncertainty in the intellectual universe
can be expressed by a distribution over possible worlds [194, 226] (see figure 2.3). The
possible worlds semantic is borrowed from logical systems theory. There, a possible
world is a world where a logical sentence is fulfilled. This can be generalized to the
statement:

The intellectual universe contains every possible world in accordance with the
satisfaction of evidence gathered from observation of the physical universe

According to Russell and Norvig [226], the expression “possible worlds” can be substi-
tuted with “model” and the uncertainty in the possible worlds can be expressed by
a suitable uncertainty measure. According to Endsley [68] a “model may incorporate
not only the value of different system parameters (e.g. the level of the fuel gauge, and
the speed of the motor), but also includes an understanding of the dynamics of the
system (e.qg. rate of change and system vectors) developed from the changes in the
situation model over time”. As a consequence, to cope with the dynamic nature of
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Figure 2.3: Ambiguous inter-connection of physical world and intellectual world by
observation

the environment in I'TS, a suitable situation model has to be capable of expressing the
situation dynamics. According to Craik [54] an intelligent system by using a “model
of external reality and of its own possible actions [...], it is able to try oul various
alternatives, conclude which is the best of them, react to future situations before they
arise, utilise the knowledge of past events in dealing with the present and future, and in
every way react to it in a much fuller, safer and more competent manner to emergencies
which face it”. Thus, an episodic modelling of the situation is inadequate for the I'TS
environment. Sequential modelling is required to learn from the past, estimate the
present and predict the consequences of actions.

A suitable situation model has to represent all details that are required to evaluate
the action space and make proper founded decisions relevant to solve the problem. But
on the other hand, it should not take into account more than the required level of detail.
Additional information which is irrelevant for a proper decision-making shall therefore
not be taken into consideration. Although a sound inference process will not change its
outcome according to irrelevant information, the consideration of irrelevant information
makes the problem complexer than it is. This is based on the principle of Occam’s razor
stating: “Thou shalt not seek an explanation based on more complex mechanisms, until
you are satisfied that simpler mechanisms will not do!” In model learning theory this is
an aspect of over-fitting or over-parameterization of the model which is in effect, if the
level of detail is inappropriately high. Model parameters shall be taken into account
because they are decisive for the problem solution and not because they are simply
there. On the contrary, as will be shown later, information which is not available can
be inferred from others, if the parameter space is sufficiently broad. Thus, the design
of a suitable model is based on a trade-off between minimality and redundancy and
therefore is one of the major difficulties which determines success or failure of the whole
system.
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Based on a proper model of the situation and its coherences, intelligent systems
can estimate the situation they are currently confronted with and predict its evolve-
ment. This concept is referred to as situation awareness. Endsley defines situation
awareness as: “Being aware of what is happening around you and understanding what
the information means to you now and in the future” [69]. “Understanding” in this
sense means that a system knows how to work with the information (what means
temperature?), what is the “relevant” information which is embedded (e.g. what is
the current temperature at my position given a measurement in a distance of 1000
meters 10 minutes ago?) and what is the worth of the information for other entities (is
this temperature measurement also of interest for others?). The latter is of particular
importance if cooperative systems are focused. Cooperativeness additionally extends
situation awareness by the process of situation modelling in a multi-agent environment
with cooperative observation and actions taking into account all relevant entities within
the cooperation.

2.2.1 State Representation

A situation representation can be considered as a set of information items {51, ..., S, }=
S whereas 9; represents an aspect of the intellectual universe which can be distinguished
from other aspects of the universe, e.g. temperature, distance, speed or rain, in the
following called situational information® [213]. Examples of situational information
are for instance:

e Temperature T = [—273.15;00) in centigrades (°C)

e Distance D = NJ in millimeters (mm)

e Velocity V=R in meters per second (m/s)

e Pavement Condition PC = {dry,wet,icy} as discrete state values
e Rain R = {true, false} as boolean value

The states of the situational information S; are mutually exclusive and exhaustive.

A situational information is generated by a source of information, for instance a
thermometer, a GNSS receiver or a rain sensor. Each source of information provides
an output in the respective value domain if it is working properly. Normally this is a
definite instance of the value domain as for example an instance of the temperature T,
e.g. T = 18.7°C or a position of (lat,lon) = (48.06°,11.35°) in WGS-84 datum or a
rainy weather R = true.

In order to evaluate the real worth of the sensor measurement and its implication
for the situational information of interest, one has to critically analyse the source
of information with respect to inaccuracy and incompleteness. Inaccuracy refers
to the concept of error. The fact that every sensor is “always fraught with error’
[158], is a major impact for inaccuracy of measurements and thus has to be actively

U

Tn the remainder of this work situational information is written with a capital letter and with a
monospaced font
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18 2.2: Situation Model

taken into account in order not to be put off the scent by erroneous measurements.
Incompleteness refers to the lack of information. If for instance a relative position
information which consists of a direction and a distance value is of interest, e.g. for the
blue vehicle in figure 2.3, but only a distance measurement appliance mounted in the
orange vehicle provides evidence (e.g. by signal runtime or signal strength measurements
[224]), the measurement is incomplete for the situational information of interest which
does not mean that it is irrelevant. Indeed, as will be seen in the next chapters, the
distance measurement can be of high worth even if it is not sufficient to provide the
complete information.

Both inaccuracy and incompleteness provide uncertainty to situational information
and this uncertainty has to be somehow explicated in the situation model. If this is
not done and uncertainty is neglected, undesired effects often are indispensable. This
becomes clear if the relative position information which was measured by a distance
measurement appliance has to be denoted. Due to the missing direction measurement,
no information regarding the direction of the blue vehicle is known. As a consequence
the relative position will be located somewhere on a ring around the distance measure-
ment appliance (see figure 2.4). If the relative position is specified as a “hard state”,
without explicitly expressing uncertainty about the direction of the other vehicle, the
relative position can be reduced to the position which minimizes the mean squared error
which would be the center point of the ring in figure 2.4. This point has a constant
error in the order of the ring radius. On the other hand a random point on the ring
can be selected which reduces the minimum error but increases the maximum error to
twice the radius if the real position is exactly antipodal.

In contrast to a hard position representation Angermann et al. hence introduced in
[25] the soft location concept. The soft location is specified by a probability distribution
which can be used to explicate the uncertainty in the position specification. In this
work, we adopt the concept of soft location and extend it to the general concept of
soft situational information which uses a probabilistic measure for the explication
of uncertainty:.

Generally, for a situational information two different kinds of representations can be
distinguished:

e hard situational information with its state represented by a single domain
value s; € S;, and 2

e soft situational information with its state represented by a probability distri-
bution P over the whole state space S;. P can be specified by a probability table
or a probability mass function (PMF) for discrete values or, in case of continuous
values, by a probability density function (PDF). Thus, the state of the situational
information S; is represented by the probability distribution P(.S;).

An example of a PDF for the soft location is shown in figure 2.4. Although the
relative position cannot be determined unambiguously due to the incompleteness of
the measurement, the area of the possible location tends to the yellow-red circle due

2Tn the remainder of this work a state s; refers to the situational information S; and is written with
a small letter and in a slanted font
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to the given distance measurement. The blue area is considered as almost improbable.
The red area shows the location with the highest probability for the location. Due to
the inaccuracy of the measurement the area is not bounded by sharp edges but shows
a gradient distribution. Thus, although the measurement is incomplete and inaccurate,
the area of all possible locations is strongly constricted and may already be sufficient
to make appropriate decisions.

Distance in Y direction

P(Distance)
o
(52}

5 10 15 20 25 30
Distance in X direction

Distance in Y direction -5 —6  Distance in X directio

Figure 2.4: Soft Location measured with distance measurement appliance located at

(0,0))

The predominance of the soft situational information concept emerges due to the
explication of state-inherent uncertainty. Whereas a hard situational information dis-
poses the inherent uncertainty and focuses on a single certain value (for instance the
most probable state), therefore suppressing important information, soft situational
information provide much more detailed information on the state, its distribution and
uncertainty.

Of course in simple system environments it may be reasonable to use hard situational
information for complexity reduction. But this fact does not invalidate the predomi-
nance of soft situational information because a hard situational information can always
be formalized by a probability distribution with a single state value s; with probability
1, v—s5=0
0, ©—s;#0 "

Thus, it is sufficient to use only the concept of soft situational information through-
out this work as hard situational information is only a specific occurrence of soft
situational information.

In the soft situation model introduced by S = {Si,...,S,} and the respective
probability distribution Ps every single situational information S; with i € {1,...,n}
can be considered as an aspect of the intellectual universe described by a random vari-
able with an associated probability distribution Ps,. The probability of the situational
information S; being in state s; hence is Pg,(x = s;) with = being the outcome of interest
of S; and s; € ;. In the remainder Pg,(x = s;) will also be used by the abbreviated
version as Pg,(s;) or simply P(s;).

P(z = s;) = 1 or by the equivalent Dirac delta function ds, (z) =
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2.4 Comparison to alternative situation models

In order to embed probabilistic causal networks in the state of the art of intelligent
system theory, this chapter will provide an overview of alternative methods for situation
modelling and inference and will show their applicability in the context of I'TS.

2.4.1 Formal Logics

One of the oldest forms of knowledge representation and reasoning is formal logics.
Formal logics can be traced back to the Ancient Greeks, particularly Plato, Aristotle
and Pythagoras. Aristotle’s logical syllogism is one of the major achievement in logical
inference which persists to modern times as basis for most inference methods. A typical
syllogism is:

(1) If it rains, the road will get wet. (Major Premise)
(2) It is currently raining. (Minor Premise)
(3) The road will get wet. (Conclusion)

Every sentence is structured in the form If A then C with A being the antecedent
and C' the consequence or as a simple declarative sentence, e.g. “It is currently raining”.
The type of inference which is used to infer the third sentence using the first and the
second sentence belongs to the so called deduction which concludes a consequence if the
premises are true.

Sentence > Sentence
Entails
Representation @ L
______________ sy ______ 3} _____
g g
World =2 =2
2] 2]

Aspects of the Aspects of the
real world Follows real world

Figure 2.20: Logical entailment in the real-world and its representation (source: Russell
and Norvig [226])

Major premises, such as ’if it is raining, the road will get wet’, are the basis
for reasoning in formal logics. They are valid in every intelligent system and thus
belong to the commonsense propositions. Logical systems keep such propositions in a
commonsense knowledge base. The knowledge base K B and observations such as “it is
currently raining” serve as a basis to infer conclusions such as “the road will get wet”
which can be written in the following form:

KB,o E «
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44 2.4: Comparison to alternative situation models

= refers to the operator of logical entailment and means that in every possible world
in which K B, the knowledge base, and o, the observation, are true, the conclusion « is
true. For a real-world problem, this means that by observing o under the assumption
“KB is true in the real-world, then any sentence o derived from KB by a sound inference
procedure is also true in the real-world” [226] (see figure 2.20).

2.4.1.1 Propositional Logic

Logical entailment strongly depends on the logical calculus and inference procedures
used. One of the simplest kinds of logics is Propositional logic. Propositional logic, also
called Boolean logic or sentential logic, consists of bi-valent propositions inter-related by
truth-functional connectives. Propositions can be either true or false. Basic connectives
are negation —, conjunction A and disjunction V whereas already the combinations
{—=,V} or {—=,A} are functional complete. Functional completeness follows from the
ability of a set of connectives to express every function of the respective logic [138].
Further connectives which can be build from the basic connectives are implication —,
biconditional <, zor <, nor | or nand 7. The latter two (| and T) are already
functional complete by themselves as it is shown in [262] or [138]. A proposition using
these connectives is for instance: Raining — RoadIsWet which is equivalent to the
proposition —Raining V RoadIsWet and is true whenever antecedent and consequence
both are true or the antecedent Raining is false (see table 2.1).
A knowledge base consisting of the two sentences:

e Raining — RoadIsWet < —RainingV RoadIsWet and
e RoadIsWet — IncreasedWheelSlip <> —RoadIsWet V IncreasedWheelSlip

restricts the valid possible worlds as depicted in table 2.1.

Raming | RoadlsWet | Raming  — RoadIsWet Increasefi RoadIsWet
WheelSlip —  Increased
RoadIsWet .
WheelSlip
false false true
false false true
false true true
false true true
true false false
true false false
true true true
true true true

Table 2.1: Truth tables for the two logical sentences Raining — RoadIsWet and
RoadIsWet — IncreasedWheelSlip

Given this knowledge base the proposition Raining A ~RoadlsW et cannot be con-
cluded because K B, Raining = = Raining \ RoadlsWet. Logical entailment would re-
quire that in every possible world in which K B, Raining is true Raining A—RoadlsW et
is true which is not the case as can be seen in table 2.2. Thus the possible world in
which Raining A ~RoadlsW et is true is not consistent with the knowledge base.

Similar to the possible world Raining A —RoadlsW et all other possible worlds can
be evaluated in the context of the knowledge base in order to decide whether they are
valid or not. “The fact that inference in propositional logic is NP-complete suggests that,
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’ Raining \ RoadIsWet \ (—Raining V RoadlsWet) A Raining \ Raining N ~RoadlsW et ‘

false false false false
false true false false
true false false true
true true true false

Table 2.2: Possible worlds for the logical entailment K B, Raining - —Raining N\
RoadIsW et

in the worst case, searching for proofs is going to be no more efficient than enumerating
models” [226], i.e. all possible worlds.

If the logical knowledge base contains the rule —Raining V RoadIsWet and a sensor
reports Raining, the inference process concludes on the logical consequence RoadIsWet
because Raining A RoadIsWet is the only valid possible world. And with the rule
—RoadIsWet V IncreasedWheelSlip the occurrence of an increased Wheel Slip can be
inferred from Raining. This consecutive conclusion is logically sound because proposi-
tional logic is transitive. But it is not able to reflect cause-effect relations with uncer-
tainty: “Rain only increases the probability of occurrence of a wet road which increases
the probability of occurrence of an increased wheel slip”. The “hard” implication in the
proposed knowledge base, which makes rain a sufficient condition for an increased wheel
slip, does not reflect the characteristics of the real-world in the required detail. Adding
the additional rules Raining A —RoadIsWet and RoadIsWet A —IncreasedWheelSlip
eliminates the sufficiency condition but on the other hand makes the model completely
useless because no value whatsoever is encoded in the knowledge base any more.

If the initial knowledge base is used in reverse direction, e.g. inferring from an
observed Wheel Slip, a conclusion that the RoadIsWet and it is Raining may be
obvious. This is called the fallacy of affirming the consequent which is an invalid
conclusion in propositional logic. It is not given by the rule set “Raining V RoadIsWet
and —RoadIsWet V IncreasedWheelSlip because no statement on the premise can be
made based on a true consequence. A true premise as well as a false premise might
be the reason. The mere valid conclusion in reverse direction is that in the absence of
the consequence (—IncreasedWheelSlip) the premise needs to be false (—RoadIsWet).
Informally this can be translated to “RoadIsWet s only true, if IncreasedWheelSlip
is true” which again does not reflect a cause-effect relation with uncertainty because an
IncreasedWheelSlip is necessary for RoadIsWet which is not true in reality.

All sentences in the knowledge base as introduced above have the following form:

—antecedent V consequent
This rule validates the following possible worlds:
e antecedent A\ consequent
e —antecedent N consequent

e —antecedent A\ —consequent
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Thus, the implication rule can also be written in the form:
(antecedent A\ consequent)V (mantecedent A consequent)V (mantecedent A—consequent)
For the above example the possible worlds thus are:

(Raining A RoadIsWet A IncreasedWheelSlip) V

(-Raining A —RoadIsWet A ~IncreasedWheelSlip)

Now all possible worlds as a conjunction of situational information are combined in a
disjunction. This form is called a Disjunctive Normal Form (DNF). Every knowledge
base in propositional logic can be transformed in a DNF. Similar to the DNF, a
knowledge base can be transformed to a Conjunctive Normal Form (CNF), ie. a
conjunction of clauses, where a clause is a disjunction of literals, and in particular to
the 3-Conjunctive Normal Form (3-CNF) where each clause consists of three literals
each being a situational information [226]. It has been shown in [52] that the Boolean
satisfiability problem (SAT) in 3-CNF can be transformed to a probabilistic causal
network within linear effort. Thus, Bayesian networks are at least as expressive as
propositional logics but as a consequence also NP-hardness for the inference has been
passed on.

2.4.1.2 Predicate Logic

An extension to propositional logic with more expressive power has its origins in Freges
predicate logic [86]. The elementary units in predicate logic are the predicates which,
in contrast to the propositions in propositional logic, may include variables which can
be quantified. Quantification is done by the universal quantifier V and the existential
quantifier 3. Additionally, predicate logic introduces the concepts of objects and func-
tions. Depending on how the new concepts are used, one can differentiate between
different types of predicate logic which are mainly first-order logic (FOL), second-order
logic or in general higher-order logics.

First-order logic introduces additional symbols which are constants (e.g. Road),
predicates (e.g. isWet) and functions (e.g. atPosition). With this kind of logic a
sentence such as isWet(at Position(Road, (48.06°,11.35°))) to express that the road at
location (48.06°,11.35°) is wet can be formed. Using such a sentence, additional logical
statements can be formulated which were not possible by simple propositional logic:
Va,y : isWet(atPosition(Road, x,y)) — isWet(at Position(Road,x + 5,y + 5)) which
means that if the road at location (x,y) is wet, the road will also be wet at location
(x + 5,y + 5) and this rule is valid for all locations. Thus, with predicate logic is it
possible to define relations between possible worlds instead of explicitly naming the
facts as it is required in propositional logic. In contrast to propositional logics where a
possible world is defined by mere facts, a “possible world, or model, for first-order logic
is defined by a set of objects, the relations among them, and the functions that can be
applied to them” [226].

Although predicate logic is much more expressive than propositional logic, a general
problem of all classical logics (propositional logics, first-order logics, higher-order logics,
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etc.) is that classical logical reasoning is monotonic. That means that “if a sentence
@ can be inferred in FOL from a set I of premises, then it can also be inferred from
any set A of premises containing I' as a subset” [6]. The same applies of course in
propositional logic because “a clause [of '] is true if any literal is true, even if the other
literals do not yet have truth values; hence the sentence as a whole could be judged true
even before the model is complete” [226]:

TEey A TCA — Akgp

This fact makes classical logics unreasonable to model dynamic real-world problems
where sequential reasoning often requires that jumping to a conclusion and subsequently
retracting that conclusion as further information becomes available has to be feasible.
This requires the support of non-monotonic reasoning and which is a crucial requirement
for future I'TS applications.

Furthermore, monotonic reasoning makes the estimation of the worth of information
unfeasible because information contained in A\I' which has a high relevance becomes
completely irrelevant if A already renders ¢ true. If we consider the example depicted
in figure 2.15, a knowledge base for abduction may contain among others the following
sentences:

IncreasedWheelSlipl <> RoadIsWet
IncreasedWheelSlip2 <~ RoadIsWet
IncreasedWheelSlip3 < RoadIsWet

Then, the observation of IncreasedWheelSlipl entails RoadIsWet because:
K B, IncreasedWheelSlipl = RoadIsWet

An additional observation, e.g. two other sensors reporting —IncreasedWheelS1lip2
and "IncreasedWheelS1ip3, will not affect the conclusion since IncreasedWheelSlipl
already made the conclusion true. Therefore, if the outcome of the abduction does not
depend on the incorporation of additional evidence, the worth of the additional evidence
is zero. Thus, classical logic is not able to treat information according to its real worth.

2.4.1.3 Non-monotonic Logics

The lack of non-monotonic reasoning is tackled by various kinds of non-classical logics,
e.g. default logics [218], modal logics or probabilistic logics.

Default logics try to solve the problem of the lack of default knowledge. Classi-
cal logic cannot assume default sentences, for instance, if nothing else is known, the
observation of an IncreasedWheelSlip is caused by RoadIsWet, because due to the
monotonicity new observations, such as a Race Start cannot remove the conclusion
RoadIsWet. Thus, default logics extend classical logics by the capability of using default
rules. A simple default logic which is used in the logical programming language Prolog
is negation as failure [48]. Here, every sentence which cannot be proved to be true is
considered as false by the closed world assumption. Thus, every sentence that cannot
be proved has a default rule which assigns it to false. In general, default logic (D, W)
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extends the classical logic W by a set of default rules D also called the background
theory. With the introduction of the background theory a useful new concept has been
developed for logical systems, but it has to be considered that if “one allows hypothetical
reasoning [,i.e. probabilistic reasoning/ then there is no need to define a new logic to
handle nonmonotonic reasoning” [202]. Thus, by using probabilistic reasoning which
allows non-monotonicity, the concept of explicit default rules is not required.

Modal logics extends classical logics by two additional modal operators, namely
Necessarily [0 and Possibly . Necessarily and possible are not truth-functional in
contrast to the connectives and, or, etc. of classical logics. A connective is truth-
functional “whenever we are given the truth-value of the argument or arguments, we can
deduce the truth-value” [113] of the whole sentence which may be a complex sentence
consisting of several arguments. The evaluation of non-truth-functional modal operators
requires taking into account how things might have been, of the conceivable possible
worlds alternative to the actual one. Then, Op counts as true if and only if p is true
in at least one possible world, and Up is true if and only if p is true in every possible
world.

Another step to non-monotonicity is probabilistic logic. “Perhaps the simplest type
of probability logic is a propositional logic in which the logical implication relation =
is generalised to partial entailment |=,” [263]. Thereby, KB |=, X means that given
the knowledge base KB X is implied with probability P(X|KB) = y. If the premise
“is empty we get a concept of degree of partial truth which corresponds to unconditional
probability” [263]. Propositional entailment is given by y = 1, thus, propositional logic
is a subset of probabilistic logic. A further expansion to probabilistic entailment results
in the following definition:

O1:21,...,0x, EP:y

which means ©; with probability z; and ...and ©; with probability x; entail & with
probability .

The concepts given by default rules, modal operators and probabilistic implication
provide fundamental extensions to classical logics that allow non-monotonic reasoning
and opens the expressiveness of logical systems to sequential reasoning in dynamic
problem domains. But still one of the major principles of classical and non-classical
logics holds, the Principle of Bivalence. Based on this principle each valid sentence
can merely be ascribed to one of the two truth values: true or false. The evaluation
of a valid sentence will result in exactly one of these values, e.g Raining = true,
Raining A —RoadIsWet = false, which does not allow the expression of vagueness or
uncertainty. This problem has been tackled by many-valued logics.

2.4.1.4 Many-valued Logics

Two-valued logics were unique until Lukasiewicz came up with three-valued logics in
the 1920th and extended the two-valued logics with the third value possible [159]. This
value was used for cases where neither true nor false can unambiguously be assigned.
This can be the case for instance when no evidence is set or contradictory premises,
which are always false in classical logic, are made. Four-valued logics defined by
Belnap differentiated these two additional values ending up with four different states
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P({true, false}) = {0, true, false, {true, false}} [30]. A further extension, the N-
valued logics or many-valued logics facilitate the adoption of an arbitrary number of
values.

1 closefast closeslow leaveslow leavefast
[%]
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Figure 2.21: Membership function for change in distance in an ACC (figure adapted
from Lanik [151])

The usage of N-valued logic is for instance applied in fuzzy logic [267]. Fuzzy
logic has significantly been influenced from fuzzy set theory where a sentence can adopt
several values simultaneously. For instance the situational information Temperature can
be in the state warm and cold at the same time, e.g. at the freezing point. This can be
used to specify fuzziness in the expressions warm and cold, and warm and cold become so
called fuzzy sets. “Fuzzy sets are an instrument of modelling inexact predicates appearing
in natural languages” [167]. The strength of having a certain value in fuzzy logic is ex-
pressed by a so called membership function. The membership function maps the degree
of membership to a certain state on the interval [0; 1] whereas 0 means no membership
and 1 means full membership. For the longitudinal control function of a driver assistance
system, the change in distance between the preceding and the following vehicle can for
instance be expressed as a fuzzy set {close-fast, close-slow, zero, leave-slow, leave-fast}
with a membership function as shown in figure 2.21 [151].

Fuzzy logic has for instance been proposed for vehicular longitudinal control in [177,
184, 229, 170, 34, 44], for lateral vehicle control in [183, 106], for hazardous situation
detection in [115, 155], for traffic jam detection in [201] or for automatic parking system
[221]. A summary of the application of fuzzy logic in ITS can be found in [250].

2.4.1.5 Evaluation of Formal Logics against Probabilistic Causal Networks

The concepts introduced by non-monotonic reasoning and many-valuedness allow a very
flexible new type of implication which gets close to the indication between cause and
effect in probabilistic causal networks. But there is one major difference which is not
foreseen in the logical calculi introduced so far. All connectives are static and thus do
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not change according to the information in the knowledge base. Thus, a logical rule
that renders the influence of Black Ice Warning on the occurrence of Wheel Slip
will always influence the Wheel Slip if a Black Ice Warning is received. Evidence
on the Pavement Condition causes conditional independence of Black Ice Warning
and Wheel Slip (see figure 2.18). The causal influence between Black Ice Warning
and Wheel Slip has to be eliminated in this case which is not foreseen in the logical
calculi. Thus, logical systems miss the ability of dynamically adapting the strength of
the logical connectives. Of course, one might argue that the strength of the influence
can be explicitly coded to every logical connective but “explicit encoding is clearly
impractical [. .. | because relevance and dependency are relationships that vary depending
on the information available at any given time”[194] and thus will produce an enormous
control overhead which can only hardly be solved for large problem domains.

Although the membership function in fuzzy logics which assigns values between zero
and one seems to be similar to the concept of probabilistic causal networks, the func-
tionality is still quite different. “Consequently, logical probability must not be identified
with logical values of many-valued logic. The reason is that probabilistic intensionality
is incompatible with logical extensionality” [167]. In contrast to extensional approaches
which treat uncertainty as a generalized truth value, in intensional approaches, also
known as declarative or model-based approaches, uncertainty is inherent to possible
worlds. For a more detailed analysis the reader is referred to [194].

Furthermore, although a probabilistic implication appears to be similar to the
causality concept in probabilistic causal networks, the functionality is quite different.
Indeed, the inequality of probabilistic causality expressed by P(A|B) and the logical
implication B — A has been shown by Lewis and Jeffrey in [153, 124]). Additionally,
the implication in logical calculi is uni-directional by definition, even if extensional
probabilistic concepts are introduced, and therefore does not allow a bi-directional
reasoning. In summary, the intensional usage of probability in probabilistic causal
networks has not been achieved by any extensional probability handling so far which
makes probabilistic causal networks predominant to logical systems [194] for the problem
domain of interest of this work.

2.4.2 Neural Networks

A further knowledge representation and inference concept for intelligent systems are
Neural Networks. A neural network is supposed to model circuits of biological neurons
similar to the behavior of human brains. Gurney defines neural networks as: “A neural
network is an interconnected assembly of simple processing elements, units or nodes,
whose functionality is loosely based on the animal neuron. The processing ability of the
network is stored in the interunit connection strenghts, or weights, obtained by a process
of adaptation to, or learning from, a set of training patterns”[96]. In most cases neural
networks are applied to complex systems to solve complex relationships between input
and output parameters or to find patterns in the input data [226, 118, 144]. Neural
networks in intelligent transportation systems are for instance used for road detection
in [80], longitudinal or lateral control functionality in [56, 87, 121] or driver behavior
recognition in [190, 265].
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Generally, a neural network consists of a set of artificial neurons inter-connected
with each other. A neuron is activated or “fires” when a linear combination of its
inputs exceeds some threshold [226]. The linear combination simply sums over all input
connections of the neuron which are either 1 (fired) or 0 (not-fired) in case of binary
neurons. Thereby, each input connection can individually be weighted:

n
ini: E Wy Gy
J=0

with a; being the activation from neuron j to neuron ¢, and w;; the weight of this
connection. The weight w;; is allowed to be negative which allows non-monotonicity.
The neuron ¢ then fires according to the activation function:

a; = g(in;) =g (Z wj,iaj>
=0

The activation function ¢ activates neuron ¢ according to the input of its predecessor
neurons j = 1,...,n. wp,; in this case is the so called bias weight which is the main
control possibility of a neuron. If a is assigned to —1, the bias weight can be adjusted
to represent the connectives of propositional logic (1.5 for an and-neuron, 0.5 for an
or-neuron and —0.5 for a not-neuron). Accordingly, a neural network can represent
every proposition in propositional logic [172].
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Figure 2.22: Example neural network for the estimation of the pavement condition

The operation of the neural network depends on the number of artificial neurons it
has, and on the way they are connected. Neurons that are activated from conditions
outside the network are called nput neurons, neurons that provide their activation
outside the network are called output neurons and the remaining intermediate neurons
are called inner neurons [144]. For a clear structuring neurons sometimes are assigned
to a layered topology. Input neurons belong then to the input layer, output neurons
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to the output layer and inner neurons to the hidden layer. The hidden layer can be
subdivided to multiple instances representing intermediate processing steps.

A neural network consisting of six neurons in three layers is shown in figure 2.22. The
input layer comprises neurons which are triggered by processes outside the network, e.g.
sensors. Their activation is subsumed in the two hidden neurons and finally converges
in the pavement condition neuron which represents the variable of interest. If the
structure is known, in the learning phase the network can be trained to a given training
sequence which consists of input information and the according output information. In
the learning phase with fixed network structure the weights of the individual inputs
in the combination function is adapted which “is formulated as an optimization search
in weight space” [226]. If the structure is unknown, neural networks emerge as a quite
complex construct with lots of unknowns [226].

Beyond that point, when structure and weights are assigned, neural networks have
a fixed structure with a fixed information flow from input neurons over inner neurons
to output neurons (in case of feed-forward networks). Thus, in contrast to proba-
bilistic causal networks, they are bound to a strict uni-directional reasoning sequence
without clearly distinguishable causal dependencies. The greatest strength of proba-
bilistic causal networks is “causal reasoning which in turn facilitates reasoning about
actions, explanations, counterfactuals and preferences. Such capabilities are not easily
implemented in neural networks” [197]. For instance “a neural network for character
recognition may be able to recognise an A’ from a bitmap, but could not say what an
"A” looks like” [203]. The reason for this is that neural networks mainly are used for
mere abductive or mere predictive purposes and are not capable of reasoning in both
directions which limits their functionality for a flexible usage in future I'TS applications.

A further disadvantage is that the structure of a neural network cannot be easily
extended without a consecutive learning phase. Therefore, if the structure is subject to
change, e.g. due to a variable amount of vehicles, congested traffic segments or black
ice warning messages, the network has to go through a continuous learning phase which
will significantly reduce the performance of the network.

2.4.3 Data Mining

Another knowledge representation concept which has been used in the context of ITS
[266] are data bases, in particular relational data bases. The first similarity of data bases
and probabilistic causal networks appears in the graphical notation. Data base system
are often described by the Entity-Relationship-Model (ERM) [45] which is similar to
the notation of probabilistic causal networks. Figure 2.23 shows one of the previous
examples in an ERM *. Temperature causally influences Pavement Condition with a
N : 1 relation meaning that a state of Temperature determines exactly one state of
Pavement Condition (dry, wet or icy) but not vice versa. This state of Pavement
Condition then determines exactly one state of Wheel Slip (yes or no).

The data model used in relational data bases can be traced back to Codd’s work in
[49, 50]. The core is a collection of predicates over a finite set of n predicate variables,

4In the ERM of the figure no attributes are shown for simplification. Thus, every entity comprises
a single attribute being the entity name with its assigned domain
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Temperature 1 N I?:%\a%ri?iec})rrllt 1 N | Wheel Slip
{-19°,-18°,..,+40°} {dry,wet,icy} {yes,no}

Figure 2.23: Example of an Entity-Relationship-Model

called n-tuples, describing constraints on the possible values and combinations of values.
Each element of a tuple is a triple (A, V, v) consisting of the attribute name A, the
domain V' and a value v [57] which is similar to the already described situation model
with situational information S; and its value s; in the respective domain. The valid
set of n-ary relations R which inter-relates n variables is equivalent to a possible world
description in the purpose of this work.

The data base design according to the ERM of figure 2.23 with some initial relations
is shown in table 2.3.

’ Temperature ‘ Pavement Condition ‘

) dry ’ Pavement Condition \ Wheel Slip ‘
+1 dry dry no

0 wet wet yes

-1 icy Snow yes

-2 icy

Table 2.3: Data base design according to functional dependencies

In order to translate an Entity-Relationship-Model into a data base design every
inter-relation becomes a data base table and every entity with its attributes is translated
to a data base table in case of more than one attribute per entity. Inter-related tables
are references by foreign keys shared between these tables. This results in a lot of
tables if the data is highly inter-related. The number of tables for the inter-relations
can be reduced by exploiting ontological constraints in the data. Ontological constraints
in inter-relations between predicate variables in relational data bases are based on
functional dependencies. A functional dependency constrains the relations of states
between variables. That means:

Y is functional dependent on X or X — Y iff

vV tuples ty,to € R: [ X]| =6[X] = 4[Y] = t[Y]

For instance, the Pavement Condition is functional dependent on Temperature, i.e.
Temperature — Pavement Condition, and Wheel Slip is functional dependent on
Pavement Condition, i.e. Pavement Condition — Wheel Slip. Due to the transitiv-
ity of functional dependency, Temperature — Wheel Slip is true. Table 2.3 shows valid
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54 2.4: Comparison to alternative situation models

relations that fulfill the constraint of this functional dependency. But this functional
dependency is not true anymore in case if there isno 1 : 1 or N : 1 relation thus having
an ambiguity in the relations. For instance, it is not determined whether the Pavement
Condition is dry, wet or icy if the Temperature has zero centigrade. Furthermore, it
might even be dry if the Temperature is below zero centigrade without precipitation.
The N : 1 relation therefore has to be eliminated. Thus, there are three valid relations
with Temperature=0 but different states for Pavement Condition (see table 2.4). The
same is true for the inter-relation of Pavement Condition and Wheel Slip resulting
in a plethora of possible relations and eliminating uniqueness and simple data base
designs.

’ Temperature \ Pavement Condition ‘

[ Pavement Condition | Wheel Slip |
+1 dry dr es
+1 wet dry i/lO

0 dry We}; es

0 wet -

i wet no

0 1cy ic es

-1 dI'y lcy EO

-1 icy Y

Table 2.4: Data base design without functional dependencies

Using data bases to model complex real-world problems as they are targeted in this
work is not trivial and straightforward. A critical limitation is the usage of hard state
descriptions. Furthermore, the high number of ambiguous inter-relations complicates
the data base design which will result in complex system design and high storage
consumption as well as complex inference procedures. Whereas data bases can perfectly
be used to model “man-made” environments, such as customer lists with clear states
and inter-relations (e.g. every customer has a unique ID), data bases are not suitable
to model complex real-world environments.
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2.5 Concluding remarks and evaluation

This chapter introduced a situation model and the according inference which can be
considered as the fundamental basis of this work. It was shown that other approaches
cannot fulfill the requirements of future I'TS applications as introduced in the beginning
of this chapter. The main problems are the difficulties as described by Pearl in [194]:

e Improper handling of bidirectional inference,
e difficulties of retracting conclusions, and
e improper treatment of correlated sources of evidence

Probabilistic causal models together with the according inference opposed to other
knowledge representations use probability as an intensional measure to express the
system inherent uncertainty. Thus, it is often called nondeterministic or inaccurate
because the outcome is not a single discrete value. But if a real-world problem has
to be modeled, uncertainty is inevitable because it is impossible to model every single
detail and inter-relation unless we are targeting a model which has a greater extent
than the problem itself. Uncertainty hence is fundamentally given in models expressing
real-world problems.

Therefore a detailed picture of the world requires taking into account the uncertainty
of the world within the model. Probabilistic causal models exactly do that by expressing
uncertainty with a probabilistic measure. Together with the probabilistic inference
which is based on an axiomatic deterministic set of rules (i.e. Kolmogorov axioms and
Bayes rule) a way to calculate uncertainty is given. Pearl simply states this in [195] as
by probabilistic causal networks “causality has been mathematized”. Thus, it can be
argued that not the probabilistic models are nondeterministic and inaccurate but the
models that do not take into account the problem’s inherent uncertainty. If an explicit
neglect of uncertainty is desired, “we obtain the deterministic theory by letting all the
probabilities in question be either 1 or 07[248]. Thus, systems neglecting uncertainty
can simply be considered as a subset of probabilistic one’s and “to switch from strict
causality to probabilistic causality, we simply replace implication by weight of evidence”
[92].

It has to be noted that probabilistic models and inference must not be equalized with
calculating by chance. They merely express problems that are or seem to be occupied
by a certain extent by chance. Foot states this as follows: “when actions or choices are
called 'chance’ or “accidental’ this has anything to do with the absence of causes, and if
it has not we will not be saying that they are in the ordinary sense a matter of chance if
we say that they are undetermined” [82]. By the mathematization of probabilistic causal
models they are based on deterministic mathematical axioms and thus are completely
non-ambiguous and traceable. Thus, it is important to note that Probability is not
Chance.

Probability in this work is considered as a subjective measure for belief. This concept
was mainly influenced by Ramsey 1926 in [206], deFinetti 1937 in [60] and Savage 1972 in
[231]. Subjective probability in this sense means the probability describes the personal
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26 2.5: Concluding remarks and evaluation

belief of an agent regarding a specific situation in its intellectual world and not the
situation in the physical world.

In contrast to the subjective interpretation of probability, the objective probability
interpretation is used by frequentists and propensity theory [204]. Objectivists argue
that probability is ontologically given and independent of one’s belief. “The difficulty in
the objectivistic position is [... ] [that] probabilities can apply fruitfully only to repetitive
events [...] and it is either meaningless to talk about the probability that a given
proposition is true, or this probability can be only 1 or 0, according as the proposition s
in fact true or false”. Thus, frequentists have difficulties to answer questions like “what
is the probability of rain tomorrow?” or “what is the probability of an icy pavement
condition in the headway of the vehicle when it reaches it?” because the probability
refers to a single event which frequency is either one or zero.

In contrast to this, sources for subjective probabilities are given by measurements,
“(statistical) data, literature, and human experts“ [63] and can automatically be uti-
lized to derive network structure and probability distributions by learning algorithms
[101, 226], manually by domain experts [134] or a combination of both. Since these
probability distributions sometimes are hard to determine, uncertainty in the probabil-
ities of the situation model may occur. This uncertainty can again be expressed by a
probability distribution, i.e. probabilities of probabilities [194]. Inference then can be
based on Bayesian model averaging [108]. Therefore, a probability distribution P(M)
is assigned to the set of possible models M = {Mj, ..., M;}. The posterior probability
of a situational information S; given evidence E and taking into account the models M
can be determined by:

P(Si|E) =) P(Si|M;, E)P(M;|E)

J=1

It is “an average of the posterior distributions under each of the models considered,
weighted by their posterior model probability” [108].

According to the algorithms used for the inference, in particular approximating
algorithms as they will be used later in this work, a certain amount of chance can
be induced which makes the outcome partially dependent on chance (see chapter 5).
This is not the case if exact inference algorithms are used. The application of exact
algorithms only depends on available computation resources. If sufficient computation
resources are disposable for the problem complexity exact algorithms are preferable over
approximation. If not, approximating inference algorithms often can provide a sufficient
approximation of the exact inference.

A major goal of this work is to show that situational information cannot be regarded
independent of all other situational information. “Making effective use of information
about dependencies is essential in reasoning” [194]. In particular if physical worlds are
represented by the situation model, it is required to take relevant situational information
into account that has influence on the situational information of interest. The relevance
of information thereby is the critical point which has to be considered when talking
about distributed systems which allow to exchange information between entities. If this
exchange is constricted by bandwidth, latency, reliability, etc. the worth of information
has to be considered before the inference process. “In other words, before we examine
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B, we need to know if its truth value can generate new information that is relevant
to A and is not available from K” [194], with K being the knowledge we already
acquired. To achieve this, the actual information content in the current context has to be
considered, whereas, according to MacKay [162] “Information content, surprise value,
and log likelihood or log evidence are the same thing”. Especially the second definition,
the surprise value, reflects the intention of this work. In order to communicate efficiently
and effectively between vehicles and between vehicles and infrastructure the surprise
value shall be high for the receivers of a message, otherwise the worth to communicate

it should be put into question.
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3 Forward Integration

A wise man, therefore, proportions his belief to the evi-
dence. In such conclusions as are founded on an infallible
experience, he expects the event with the last degree of
assurance, and regards his past experience as a full proof
of the future existence of that event.

David Hume (1711 -1776)

From Evidence to Decisions

In the previous chapter the concepts of probabilistic causal networks have been defined.
By using these concepts it is possible to model situations with a set of situational
information which describe different aspects of the physical universe. Conditional
probability distributions quantify their coherencing causal dependencies. Inference can
be used to derive implicit knowledge incorporating explicitly given evidence and prior
knowledge. With this they already provide the basic functionality which is required
throughout this work and therefore serve as the fundamental basis for all concepts which
will be introduced subsequently to provide additional problem-specific model extensions.
As the final objective is to make the best decision given all evidences, these extensions
comprise the network structuring for the incorporation of various kinds of evidences
over time and the decision-making functionality. Whereas the former is used to cope
with the specifics of dynamic environments, different kinds of information sources, and
sequential reasoning, the latter is required to decide in favour of an optimal action which
is based on evidence of the past and has an effect in the future.

3.1 System Model

A crucial problem of probabilistic causal networks describing real-world problems is
that they quickly reach complex proportions and seem to be highly unstructured. Even
for simple problem spaces the situation model quickly reaches great dimensions like
the one shown in figure 3.1. Such a situation model mainly has drawbacks in terms of
storage and computation complexity and is difficult to interpret and analyse by humans
because of the complex inter-dependency structure. Thus, a clear structure would be
beneficial which utilizes a clear separation of concerns.

According to the proposed situation modelling concepts, situational information is
used to describe an aspect of interest of the physical universe. Observations, which
concatenate the physical universe with the intellectual universe by the introduction
of evidence, are capable of assigning values to situational information. For instance,
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60 3.1: System Model

Figure 3.1: Complex Bayesian network (source: Murphy [181])

evidence can be used to assign the situational information Pavement Condition an
icy state. But in reality this situational information represents a state of the physical
universe which can only be hardly observed directly because there is no simple sensor
that is capable of accurately observing the Pavement Condition. Thus, Pavement
Condition can be characterised as “hidden” in the situation model. However, it can
be inferred by means of other situational information as it has been explained in the
previous chapter.

Indeed it can be said that generally no hidden aspect of a situation at all can be
observed directly. From a philosophical point of view the Kant’s “thing in itself” is a
comparable construct which is an objective instance independent of any observer. It
becomes accessible by the perception of evidences. The perception provides a subjective
estimation of the objective aspect specific for the perception entity and shaped by its
background knowledge. This fact holds for aspects of situations such as pavement
condition, temperature, precipitation or position of other vehicles and their dynamics
as well. The attribute velocity of a vehicle, for instance, is an objective concept as
the actual vehicle is moving through the environment with a definite velocity. There
are different observation techniques that allow to estimate this velocity. It can be
achieved by counting the number of wheel rotations, by differentiation of subsequent
GPS position fixes or by using the Doppler shift of a reflected radar signal. The
perception of these evidences allows a subjective estimation of the objective situational
information. It is subjective in the sense that it depends on the evidence in the
context of the background knowledge. Without any evidence no further assertion
than given by the prior knowledge can be made. Given evidence, further assertions
actually depend on the actual weight of the evidence (see section 2.3.3). Therefore, the
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estimated situational information does not reflect the objective situational information
but provides the best estimation which is accessible through the manifested evidence.
Accessibility is accomplished in the probabilistic causal network by the perception of
evidence gathered by sensors, data bases, human interactions, etc. The most important
sources of information for observing the environment belong to the category of sensors.
Norton defines sensors as “devices that transform (or transduce) physical quantities such
as pressure or acceleration (called measurands) into output signals (usually electrical)
that serve as inputs for control systems” [186]. Thus, sensors gather evidence in form
of physical quantities from a system-external process which is the I'TS environment in
this work and transforms it to an other type of signal by means of a transducer. Often
the output is an electrical signal. The inclusion of evidence from the ITS environment
by sensors measuring aspects of the situation strongly relies on the type of observation,
which is subject to different:

e measurands: acceleration, pressure, mass-flow, angular rate, rotational-speed,
phase, etc. [169]

e observable: e.g. magnetism, microwaves, acoustic waves, temperature, light,
power, etc. [76]

e reporting mechanisms: push or pull/poll
e measurement trigger: time-triggered or event-triggered

e locality: cooperative sensing using remote sensor measurements from other
vehicles/infrastructure or autonomous sensing using measurements from the
local sensor domain, e.g. in-vehicle sensors [212, 210]

Since the cooperative sensing is a rather new field in this area, in the following a short
introduction will be given. In a distributed system wireless communications can be
utilized to distribute evidence gathered from the local sensor system to other entities
within the system. This opens up a much broader sensing horizon significantly extending
the field of view of local sensors.

There are three major types of wireless communications systems relevant for I'TS:
broadcast communications, cellular communications and ad-hoc communications (see
figure 3.2). Broadcast communications are for instance FM radio, Digital Audio
Broadcast (DAB), Digital Multimedia Broadcast (DMB) and Digital Video Broadcast
(DVB). Besides these land-based broadcast systems, also satellite-based broadcast sys-
tems have to be mentioned although their role in vehicular transportation is rather
low. Generally, broadcast systems simply propagate information by broadcasting. The
addressees are all entities which are in reception range of the signal. No explicit
addressing of receivers takes place. Broadcast systems normally merely allow simplex
communications and have a range in the order of ~ 10* — 10°m or even more.

Cellular communications as the name implies are based on cells which are estab-
lished by fixed infrastructure. This infrastructure acts as a master which holds control
functionality for the respective cell and allows half- or full-duplex communications. The
size of cells normally is smaller than in broadcast systems (~ 10° — 10*m). Due to its
nature cellular communications relies on the availability of cost incurring infrastructure,
may be subject to long delays, mainly caused by management functions (authentication,
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Broadcast

+ Scalability
+ Range

— Delay

— Individuality

Ad-hoc
— Scalability

— Range

+ Delay

+ Individuality

Relevance !

Figure 3.2: Broadcast, cellular, ad-hoc communications

handover, etc.), and do not scale well with an increasing number of nodes, even if they
are only listening!. The great benefit in contrast to broadcast systems is the additional
uplink which even allows a connection to the global internet and the possibility of
directly addressing specific nodes by unicast communications. The latter significantly
increases the reliability of data transmission. Examples for cellular communication
systems are GSM, UMTS or WLAN hotspots.

The third type of communication system is denoted as ad-hoc communications.
Ad-hoc in this sense means that two or more entities can communicate without the need
for a central control unit. In ad-hoc communications each entity is a self-contained,
self-organizing communication station which is capable of dynamically forming a tem-
porary network with other stations in the vicinity [230]. All entities are principally
equal in their capabilities except for some technological differences. Communication
equipment may be mounted in any kind of vehicle, carried by pedestrians, or deployed
as stationary infrastructure often called road-side units (RSU). In the remainder ad-hoc
communications in the context of ITS is also denoted as Vehicle-to-Vehicle (V2V),
Vehicle-to-Infrastructure (V2I) (equal to Infrastructure-to-Vehicle (I12V)) or
in general Vehicle-to-X (V2X) communications depending on the respective com-
munication endpoints. In contrast to broadcast and cellular communications, ad-hoc
communications has a much shorter range (up to ~ 10°m) but stand out with very short
delay. Ad-hoc communications for ITS is currently under standardization by ETSI TC
ITS [2] and IEEE802.11p/1609.1-4/SAE2735 [8, 14, 15, 13, 12, 18].

This work mainly focuses on the last type of communications, the ad-hoc commu-
nications, but can be applied to the other types of communications as well. For the
cooperative sensing the ad-hoc communication paradigm allows to exchange evidence
between entities whenever they are in communication range. In order not to overload

!The Multimedia Broadcast Multicast Service (MBMS) may provide a useful extension for future
UMTS systems to overcome scalability issues
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the channel and reduce scalability problems, respective criteria for an adaptive exchange
of evidence need to be defined. Such concepts will be presented in the next chapter
(chapter 4). For the entities which receive evidence by means of wireless communications
appropriate mechanism to incorporate this evidence into their situation model have to
be defined. In particular, the entity has to “proportion his belief to the evidence” as it
was stated in the introductory chapter quotation and shall handle this evidence with
an appropriate weight in the context of the background knowledge.

As an important fact it has to be noted that we will not use two independent
situation models for the local sensor domain and the remote sensor domain. It is
of particular importance to use both types of sensor domains with a single situation
model since in the other case coherencing causal dependencies will be neglected and
hence essential knowledge ignored. Thus, cooperative sensing is by no means meant
to substitute for autonomous sensing. Indeed, both may profit from one another [210].
This often is neglected in the current state of the art [19, 55, 2] where novel applications
are designed and adjusted merely based on cooperative sensing with totally disregard
of autonomous sensors which are already mounted to our everyday vehicles and thus
can be used “out of the box”.

Cooperative sensors which reside on remote entities and communicate evidence
wirelessly can be considered as nothing more than additional sources of infor-
mation in a distributed system. They have to be used in tight coupling with
local sources of information in order to exploit their full worth.

Cooperative Positioning

A basic evidence which is anticipated to play a major role in future I'TS is position infor-
mation. Position information will be used to denote the current location of vehicles, any
kind of black spots (icy road segment, traffic jams, etc.) or other points of interest such
as parking lots or fuel stations. Evidence for the situational information Position can
for instance be gathered by satellite navigation systems such as GPS, Glonass or Galileo
(in the following referred to as Global Navigation Satellite System (GNSS)). All of these
systems make use of a lateration of nondirectional Time of Arrival (ToA) measurements
of microwave signals emitted from the satellites [242, 212, 210]. The position calculation
of all of these systems is subject to measurement errors which emerge due to satellite
clock offset, satellite orbit dislocation, ionospheric and tropospheric refraction, receiver
clock offset and multipath propagation. The former two error types, i.e. satellite clock
offset and orbit dislocation, are specific to a certain satellite and depend only on this
specific satellite (satellite-based). Atmospheric refraction errors depend on satellite
and receiver position (atmosphere-based). Receiver clock errors and multipath errors
strongly depend on the receiver and its local environment and therefore are specific for
each individual receiver (receiver-based). If only the distance between both entities is of
interest, satellite-based and atmosphere-based errors are compensated since the errors
only provide an equal offset for both receivers [141].

The distribution of GNSS positions to nearby vehicles by utilizing V2V communi-
cations together with the evaluation of the position information is referred to as coop-
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If conditional independence holds, the computation and storage complexity can
be reduced significantly because all situational information of the past time slices
SOk=1 — £G0R=L 1 SOk=11 as well as past evidences EVF1 = {E]F BRI can
be neglected in the computation and also removed from the memory. Only information
from the recent time slice has to be carried along when the next time slice is inspected.
As depicted in figure 3.6, the approach can be considered as a sliding window and the
window including the situation model of the recent and the previous time slice is shifted
further in time at every time instant of interest which includes the advancement of the
situational information (prediction) and the situation update every time new evidence
becomes available (update).

Given a set of evidences which is gathered at each time slice and which can be
used to calculate the posterior distribution of the situational information, the inference
process can be separated in the two well known Bayesian filter equations [46, 226]:

1. Prediction
Prediction of the situational information S**! of time slice & + 1 given past
evidences from time slice 1 to k:

B Zsk P(sk+1|sk,E1:k)_P(Sk7E1:k)

k+1 1:k —
P(S* BN B = (3.6)
B ZS’f P(SkJrl‘Sk, El:k) . P(sk|E1k) . P(Elk)
B P(EYF) B
_ ZP(Sk+1|Sk, El:k) . P(Sk|E1:k) G

Sk
_ Z P(Sk+1|5k) . P(Sk|E1k)
Sk

The equation makes use of the Markov condition (3.4) in *) which allows to reduce
the probability P(S*1S* EY*) to P(S*H1SF).
Accordingly, the prediction with continuous random variables is defined by:

P(Sk+1|E1:k) — /

P(SHYSE) P(S*|EY*)dSs*
Sk
For discrete or continuous state descriptions P(S¥1|S*) represents the state
transition from time slice k£ to k + 1. It specifies the situation dynamics from one
time slice to the next time slice. This can be for instance a movement /motion
model of a vehicle or the decay of a time variant information such as wetness
on the road. Concrete examples for state transitions will be given in chapter 5.
The second factor in the prediction equation is the estimation of the situation
which has been made in the previous time slice £ given all evidences gathered in
the time slices 1 to k. It is defined by the conditional probability distribution
P(S*|EY*) and can be calculated as follows.
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2. Update
Update of the predicted situational information of time slice k by the evidences
from time slice k taking into account all previously gathered evidences:

k 1:k P(ELk? Sk)
P(S*|E ):W: (3.7)
- P(Ek7E1:k_17 Skz) B
P(Ek} El:k—l)
B P(Elc|El:k:—17 Sk) . P<E1:k—1’ Sk) B
- p<Ek7 El:k—l) o
B P(Ek|E1:k—1’Sk) . P<E1:k—1|sk)_P(Sk> B
P(Ek|E’1:kz—1) . P(E'l:k;—l)
B P(Ek|E1:k71, Sk) X P(5k|E1:k71) . P(Elzkfl) . P(Sk> B
P(Ek|E1:k—1) . P(Sk) . P(El:k—l)
B P(Ek|E1:k71, Sk) X P(sk|E1:k71) o
P(Ek|E1:k—1)
 P(E*|S%)- P(SKEY 1)
- p(Ek|E1:k—1) o

= - P(E*|SF)- P(S*|EY*T)

Again the Markov condition (3.5) allows a reduction of the dependencies in *)
for the probability P(E¥|EY*~1 Sk) = P(E*|S*¥). « in the update equation
can be considered as a normalization constant which ensures that the posterior
probability over the entire state space sums up to one. P(E¥|S*) is the likelihood
of evidence E* in situation S*, i.e. the likelihood of perception (see section 3.3).
The second factor P(S*|E'*~1) is a prediction of the situation at time k given all
previously gathered evidences. Thus, the prediction equation 3.6 for the previous
time slice is performed which results in a recursive call of prediction and update
(see figure 3.7). With this recursive function definition prediction and update of
time slice £ can be calculated merely based on the outcome of the prediction-
update of the previous time slice which again merely is based on the prediction-
update of the previous time slice and so forth.

Starting with the prior probability P(S%) at time slice 0, every further step of the
prediction-update recursion integrates new evidence into the situation model (see figure
3.7). First the prediction step predicts the situation for the time slice given all previously
gathered evidence, then the update step updates the situation model with the recently
gathered evidence. Based on the belief outcome of the previous prediction/update
counterpart, i.e. P(S¥|EY*) or P(S*|E¥* 1) the additional factors P(S**!|S*) or
P(E*|S*) for the prediction or the update respectively form the newly generated belief
in the situation. Since P(S¥*1|S*) is based on predictive inference, it usually widens
the probability distribution and thus increases the uncertainty. The abduction with
the likelihood of the perception P(E*|S*) in the update usually lets the probability
distribution be more focused and thus reduces the uncertainty:.
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76 3.2: Temporal Situation Dynamics

A Evidence

K K
—®
P(SKELX)

Situational Information

Figure 3.7: Prediction-Update Spiral: The spiral starts with the prior probability P(S°)
for the situational information S. The next step is a prediction P(S'|S°) for the
transition to time slice 1. Then the situational information is updated by P(S*|E?)
with the evidence E' of time slice 1. After that the spiral starts over with a prediction
based on the outcome of previous update.

Figure 3.8 exemplarily shows the variation of the probability density functions for
a longitudinal distance estimation influenced through prediction and update. In the
left figure the red PDF depicts the prior probability which can be the prior probability
P(SY%) of the whole estimation process or the posterior probability P(S*|E*) of the
previous time slice k& which goes down as the prior probability in the next time slice.
The PDF in the example is given by the normal distribution N(2,0.6) with mean
i, = 2m and a standard deviation of o, = 0.6m. In the prediction step the prior
probability is influenced by the state transition probability P(S**!|S*) which is for
instance a motion model for vehicle movement (depicted in magenta) which incorporates
the acceleration uncertainty. In the example it is given by the normal distribution
N(1,0.7) with mean p,, = 1m and a standard deviation of 0, = 0.7m. The result
of the prediction step P(S**|E*) is the blue PDF which is calculated by convolution.
P(S*|E*) is proportional to the normal distribution N (i, + fim, 0, + 0,) = N(3,1.3)
with mean g, = 3m and a standard deviation of o, = 1.3m.

In the update step (right figure) P(S**1|E*) (shown in blue) is updated by the
evidence which goes down with its sensor/measurement model P(E**![S*1) which
expresses the uncertainty inherent to the evidence (depicted yellow). It is represented
by the normal distribution N(5,0.6) with mean p, = 5m and a standard deviation
of ¢, = 0.6m. The outcome of the update step P(S*+1|E*!) which results from the
multiplication of the prediction and sensor model PDFs is visualized in green. It is

2.2

given by the normal distribution .7\/(”3“5“3“e 7%5) = N(4.65,0.57). As can be seen
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Prediction Step Update Step
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05 | | e Prior: P(S*|E¥) =N(2,0.6) 05 e Prediction:  P(S**|E¥) =N(31.3)
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Figure 3.8: Variation of the probability density functions in the prediction and update
step (based on Durrant-Whyte [64])

the prediction widens the prior probability (from sharp red PDF to the wider blue PDF)
and the update focuses the PDF again (from wide blue PDF to sharp green PDF).

Process control

From the temporal perspective each prediction step periodically moves the inspection
window to a new time slice and the following update step incorporates the evidence
gathered in this time slice. Each inspected time slice normally has an equal length and
an equal set of situational information and evidences. This is the standard procedure
as it is normally found in literature [62, 226]. It requires that the information sources
regularly provide evidence in a period that is identical to the time slice duration. This
will result in an equidistant time slice structure as depicted in figure 3.6.

As equidistant time-slices do not allow a suitable incorporation of evidence which
does not comply with a constant update rate, this approach is not suitable for dis-
tributed systems. A black ice warning, for instance, which serves as evidence for an
icy pavement condition will not comply with a constant update rate as it normally
is event-triggered. In this case evidence has to be incorporated whenever it becomes
available. Thus, the constant shift of the inspection window to the next time slice will
be foiled with a prediction-update every time new evidence becomes available. What
is needed is an event-triggered prediction-update process that follows the occurrence of
evidence. The prediction P(S*"|S*) therefore has to take into account the duration
between time slice k£ and k + 1.

Reconsidering the objective of the situation model to provide an estimation of the
situation at every time instant of interest, whereas the interest strongly depends on the
kind of application, triggering the next prediction-update process only in case new evi-
dence is gathered is not suitable. As an example, consecutive losses of V2V messages will
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LD LC Utility
short accelerate 0
short decelerate 1

medium |accelerate 0
LC medium |decelerate 0.5
accelerate large accelerate 0
decelerate large decelerate | 0.1
i X LD P(LD)
Longitudinal short | 0.33
DlStance medium | 0.33
large 0.33

Figure 3.25: Longitudinal Control decision with safety objective (short form of the
decision network as depicted in figure 3.24)

If we model a driver assistance system that shall maintain a safe distance to the
preceding vehicle by penalizing acceleration in case the distance to the preceding vehicle
is short, the maximum expected utility estimation will result in constant deceleration.
The distributions of figure 3.25 always show decelerate as the best action FU(LC =
{accelerate,decelerate}) = (0,0.53) with

EU(LC|LD = short) = (0,1),
EU(LC|LD = medium) = (0,0.5) and
EU(LC|LD = large) = (0,0.1)

This is obvious because only the safety aspects have been modeled as objective and
every acceleration is penalized, so the safest situation is not to move at all. Thus, to
eventually reach the destination, an additional objective has to be incorporated in the
decision-making. The additional objective is the efficiency of movement which provides
a positive incentive with higher speeds. Figure 3.26 shows the decision network with the
additional Efficiency utility node which, together with the Safety utility, is combined
in a higher layer utility node with a weighting of 0.3 : 0.7. For simplicity reasons the
dependence of the Safety utility on the Speed as introduced in figure 3.21 is neglected.

Rational decisions with temporal situation dynamics

Up to now, the decision problem was considered as a temporarily static problem. An ac-
tion was chosen on the utility of its consequence given the recent evidence. That means
no progression over time was taken into account. In dynamic system environments not
only the situation has to be observed over time but also the decision-making process.
Evidently, this is required because a decision made at the current point in time influences
the situation in the future. E.g. pressing the accelerator pedal will result in a higher
speed in the upcoming time slice. By performing a certain action we want to change
the upcoming situation towards the targeted objectives. Thus, the value emerges from
the situation that will be achieved in the future. This has to include a prediction based
on the current situation and the action that will be performed which has an impact
on the situation transition. Thus, the alternative actions have to be compared by the
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108 3.4: Decision-making

LD Speed LC Utility
= 0.7*Safety + 0.3*Efficienc:
short slow |accelerate 0.3
short slow decelerate 0.7
medium [slow |accelerate 0.3
medium decelerate 0.35

LD LC Safety Speed LC Efficiency
short accelerate 0 slow accelerate 1
short decelerate 1 slow decelerate 0
medium [accelerate 0 medium [accelerate 1
medium [decelerate 0.5 . X medium [decelerate 0
large  |accelerate 0 LO n g 1tu d N al fast accelerate 1
large decelerate 0.1 DIStance fast decelerate 0

Figure 3.26: Longitudinal Control decision with utility functions Safety and Effi-
ciency which take into account the situational information Longitudinal Distance
and Speed

expected utility of the future situation given the evidence which has been perceived.
According to Russel and Norvig [226], “for each possible percept sequence, a rational
agent should select an action that is expected to maximize its performance measure,
given the evidence provided by the percept sequence and whatever built-in knowledge the
agent has”. Thus, a decision in a dynamic system environment shall not merely be based
on the current evidence but on the whole “percept sequence”. Therefore, the MEU has
to be calculated in the context of the evidence gathered in the time slices 1 to k by:

MEU(A|E**) = max EUMY(A|EYF) = (3.23)
_ k+1y | k+1 1k
= max D U(SH) - (ST A B

Sk+1

In the dynamic inspection the consequence S, is the situation which occurs in the
upcoming time slice S¥1, thus, S, = S**1. MEU(A|EY*) thus provides the utility
which can be achieved in the next time slice by performing the best action according
to all the evidence which has been observed up to now (see figure 3.27).

P(S* A, EY*) in this equation is the probability of the predicted situation given
the evidence observed up to now and given that action A has been performed. Thus,
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it is a prediction as defined in equation 3.6 but with the additional condition that A is
performed:

o Zsk P(Sk—&-1|sk’A7 Elzk)'P(Sk,Aj EM) B

k+1 1:k
P(S™1|A, BY%) = oL B . (3.24)
S P(SHFUSE, A, EYF) . P(SH|A, EYF) - P(A, EY)
- P(A, ETF) -
_ ZP(Sk+1|Sk,A, El:k)'P(Sk|A, El:k) _(M(2)
Sk

= P(S*[Sk, A)- P(SH|E)
Sk

In (1) conditional independence has been exploited which states that a future situation
is independent of the evidence observed up to now given the current situation and the
action which has been performed recently: P(S*1S* A, E¥F) = P(Sk1|Sk A). And,
second, in (2) additional conditional independence of the current situation S* being
independent of the action A given evidence E¥* is used: P(S*|A, E*) = P(S*| EYF).

k+1

< |

|
0 |
|
|
|

S :
&1 @&

Figure 3.27: Dynamic Decision-making

For the deliberation of the best action in time slice k, the upcoming expected utilities
for each alternative action are evaluated in the context of all observed evidences and
the action which is subject for deliberation:

MEU(A|EY) = max EUM(A|EY) = (3.25)
_ k+1y | k+1| gk ) k| plik
= mjmxz U(SH) - Y - P(SHHSH, A) - P(SH|E")

gk+1 Sk

This MEU determination for dynamic systems calculates the maximum utility which
can be expected for the time slice k+ 1 by the utility comparison of the consequences of
each action weighted by the probability of the consequence which is based on the action
prediction marginalized over the possible current situations. Thus, it takes into account
the uncertainty in the current situation and the uncertainty in the action function.
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110 3.4: Decision-making

P(S*|E¥*) in the equation is given by the update of evidence in time slice k as defined
in equation 3.7.

It is worth to note here that the prediction of equation 3.24 does not substitute for
the prediction introduced in dynamic system equation 3.6. Equation 3.24 assumes that
a concrete action has been performed. This action does not represent an act. It is a
concept merely used for deliberation which does not represent the act and, thus, also
neglects the selection uncertainty which would be the case if an act would be considered
because the system has no certainty in the implementations within the physical universe.

Planning

In the above described dynamic decision-making the relevant utility of an action was
merely inspected at the next time slice. Thus, the optimality of an action is only valid for
the next time slice. In the ITS environment an action such as the acceleration operation
influences not only the next time slice but influences also subsequent time slices (see
figure 3.28). The utility for such kind of operations therefore has to summarize the
whole duration of influence of this action:

h
MEUy(A|E™) = max > EUM(AIE™) (3.26)
=1

Thus, the utility of performing an action is the additive utility of performing the action
for the time horizon h. “In open or continuous environments, deciding what is best
depends on a time horizon - it is usually tmpractical for agents to reason infinitely far
into the future or to consider an infinite number of intermediate states” [114]. Thus,
we will only consider finite time horizons in this work.

Kk

k+1 k+2 k+3

Longitudinal
Control
k+2

Longitudinal
Control
k+1

Longitudinal
Distance

K I

[

Longitudinal
Distance
k+2

Longitudinal
Distance
k+3

Longitudinal
Distance
k+1

Figure 3.28: Safety utility evaluation of the Longitudinal Distance for a duration
of influence of the decision Longitudinal Control of h =3

It has to be noted that in equation 3.26 the best action is not determined indepen-
dently for every time slice but a single best action is determined which is optimal for all
future time slices of interest. Thus, it is no decision policy with action sequences for a
specific time horizon as introduced in [226]. As dynamic systems in ITS environments
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often have no terminal state or the terminal state is far away in time, the state-
action space is too complex for decision policies. Future utility hence is generated
by performing a single action which is chosen in time slice k£ and its influence lasts for
the duration h (see figure 3.28).

In order to determine the recent best action, rational decision-making has to
evaluate the expected utility for the future duration of influence given past
evidence

3.5 Concluding remarks and evaluation

This chapter introduced a holistic system model which incorporates the whole process
from gathering evidence to making elaborate decisions. The system model features a
clear structuring consisting of three layers: input layer, hidden layer and decision layer.
Thereby, complex probabilistic network structures are clearly separated of concerns.

It is worth to note that “systems that reason about real-world problems can represent
only a portion of reality. It is clear that any computational representation must be
a dramatic simplification of the objects and relations in the universe that may have
relevance to a decision problem. The inescapable incompleteness in representation
leads to unavoidable uncertainties” [111]. Thus, the situation model only takes into
account the portion of reality which is relevant for decision-making and ignores all
other unnecessary information.

The system model allows the usage of evidence from any kind of information source
by any kind of application. In contrast to the “one single sensor per application” this
work contributes to the concepts of a single information platform [143, 104] which
incorporates a dynamic extendible multi-sensor multi-application handling. It
incorporates temporal dynamics in the situation by introducing the dynamic filter
equations for prediction and update which add the temporal coherence required for
an adequate estimation of time-persistent situational information. The concepts for dy-
namic process control with time-triggered as well as event-triggered update mechanisms
are vital for the decision-making capability.

Event-triggered updates are initiated by new evidence which is the link between
the physical universe and the intellectual universe. The proper perception of evidence
which is generated by various kinds of sources of information which may reside on the
local entity (autonomous sensing) as well as on remote entities (cooperative sensing)
in a distributed ITS is the major challenge. Evidence has to be regarded against the
background of accuracy and reliability. In order to protect the system from drawing false
conclusions, a key feature is the exploitation of the actual worth of information which is
based on the general evidence likelihood, prior knowledge on the situational information
and contextual information, e.g. further sources of information. This can serve as
confidence check with autonomous sensing or majority vote with an increasing number
of supportive entities. Sensor fusion thus provides a major cornerstone in the proposed
system. With the multi-state concept the problems of an unknown number of targets,
unknown measurement-target associations and unknown states are tackled. Instead
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112 3.5: Concluding remarks and evaluation

of explicitly associating measurements to targets the scenario-based approach for the
perception of composite evidence avoids the problem of mis-association and enables a
1 : T relation of measurements and targets. Since applications are not interested in
explicit associations but require only a valid estimation of the current environment, an
association-free approach perfectly copes with the requirements.

Based on an update-to-date situation estimation actions and utilities provide the
required concepts for making elaborated decisions. The decision on the recent best
action takes into account all evidence gathered up to now and deliberates the impact
of an action for the future duration of influence. The key concept is to account
for uncertainty in the situation and in the consequences of actions which results in
a probabilistic causal decision network. The decision-making as proposed in
this work uses the probabilistic causal decision network as a mental model for the
deliberation of actions. “Mental models are adaptive belief constructs, used to describe,
explain and predict situations”[54], for instance, by simulation. This “mental simulation
can be used to project a course of action forward in time, and it also can be used to
look backwards in time as a way of making sense of events and observations. Here,
the decision maker is trying to find the most plausible story, or sequence of events, in
order to understand what is going on - a process of diagnosis that is intended to result
in situation awareness.” [145]



4 Backward Integration

A little knowledge that acts
is worth infinitely more than
much knowledge that is idle.

Kahlil Gibran (1883-1931)

Decisions for optimized evidence exchange

In the previous chapters it has been shown that by using probabilistic causal decision
networks, situations and the according best actions can be inferred from inaccurate
and incomplete evidence by explicitly taking into account the inherent uncertainty.
Particularly, the integration of remote sensor data which has been communicated from
other entities! in the ITS network, provides a significant knowledge improvement for
each individual node and allows a timely, accurate and reliable decision-making. In this
chapter we will focus on the specific integration of Vehicle-2-X ad-hoc commu-
nications as an adaptive source of information which can be used actively
to reduce the uncertainty in the situation estimation. Whereas in the previous
chapters it was assumed that information is received whenever it is required by each
entity via broadcast, cellular or ad-hoc communications and then serves as evidence for
the situation estimation, this chapter focuses on the underlying communications and
introduces concepts to exploit communications for an optimal exchange of information.

The fundamental input and output parameters utilized within the communication
optimization algorithms are the information included in the situation model and there-
fore the approach can be characterized as information-centric communications.
This will close the cycle from communications to information and back to communica-
tions (see figure 1.3).

Messaging characteristics

In future ITS systems single entities are expected to host a multitude of different
applications [19, 223, 18]. A vehicle may include for instance an application for Vehicle-
Based Road Condition Warning, Intelligent Traffic Flow, Lane Change Warning and
Cooperative Adaptive Cruise Control (CACC) running in parallel. According to a

n this work the term “entity” generally represents everything that is capable of sending and/or
receiving information, e.g. a car, motorcycle or truck with an on-board unit, an I'TS road-side unit, a
UMTS node B, a pedestrian carrying an ITS-enabled device, etc.
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study of CAMP VSC [55] these applications require a minimum set of information
which is listed for each application in the following:

o Vehicle-Based Road Condition Warning: position, heading, road condition pa-
rameters (~2Hz)

e [Intelligent Traffic Flow: position, velocity, heading (1Hz)

e Lane Change Warning: position, velocity, acceleration, heading, turn signal status
(~10Hz)

e Cooperative Adaptive Cruise Control: position, velocity, acceleration, heading,
yaw rate (~10Hz)
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Figure 4.1: Independent communication of V2X messages

All of these applications? require at least the position, heading and velocity of the
vehicle. Two of the four applications require information on acceleration and yaw
rate. Thus, if every application independently sends its information within a dedicated
message (single application messaging [18]), this results in a considerable amount of
redundancy in the transmitted data [223] (see figure 4.1). Redundancy in the transmit-
ted data is equivalent to an uncertainty update in the situational information of zero
because the evidence includes no additional information. Although this would increase
reliability, for instance, if a message gets lost due to a packet collision, the independent
handling of single application messages will not allow to utilize this redundancy.

A solution to reduce redundancy is achieved by combining all situational information
of all applications inside a single message which refuses redundant information (see

2 Although we will focus on these applications in the following paragraphs, the same conclusions
hold for a multitude of the applications defined by [55], [19], [70] etc.
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Figure 4.2: Multiplexed single V2X message

figure 4.2) and with the highest required update rate (10Hz for the examples). Using
a single “all-in-one” message with a common update rate according to the highest
requirements may again cause unnecessary updates of situational information which is
only required with a low update rate, e.g. road condition parameters, and hence results
in an unneeded bandwidth allocation. As long as the bandwidth is not fully used to
capacity this is not problematic but if less important information (e.g. unchanged road
conditions or position updates of a standing vehicle) is sent with high frequency at the
cost of highly important information which will not get its bandwidth share, such kind
of resource management strategy is up to discussion. Thus, this chapter is targeted on a
message exchange which takes into account the actual worth of transmitted information
for the receivers and the costs which emerge due to a limited resource availability.

For a good bandwidth utilization it is reasonable to send messages adaptively
generated and individually charged with information according to the application re-
quirements set union. This process has to be executed by a cross-application function
which is called a Message Dispatcher in the work of Robinson et al. [223] or Safety
Message Handler in SAE J2735 [18]. It is located within a common building block
for all applications and provides a common interface to the applications that have an
information transmission demand (see figure 4.3). The message dispatcher collects
the demands of all applications and eventually sends a message containing all the
information requested for transmission.

A weakness of this approach emerges due to the characteristics of an open, dis-
tributed system such as future cooperative I'TS. In such systems it cannot be assumed
that sender and receiver have an identical set of applications, especially in the course of
the continuous deployment but also afterwards by the development of novel applications.
As can be seen in figure 4.3, if an application is installed on the sender which is not
installed on the receiver, the respective information simply is ignored by the receiver
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Figure 4.3: Multiplexed message exchange with Message Handler [18] and differing
application sets on sender and receiver

(turn signal in figure 4.3). But this approach does not work in the opposite direction,
i.e. an application running in the receiver but not in the sender. Thus, the receiver
will not receive the required information although the information (road condition in
figure 4.3) may be available at the sender but is not sent because of the absence of an
appropriate application.

Therefore one of the basic contributions of this work which differs from state of
the art is the consideration of applications only on receiver side. The sender is re-
duced to a simple evidence distributor®. The main task of the evidence distributor
is to set up the message similar to the message dispatcher but without the need
for specific applications on the sender side. Furthermore, the evidence distributor
is responsible to determine the worth of information in order to perform a suitable
message prioritization in the communications part. Thus, what is proposed in this
work, is a much stronger emphasis on the information itself leaving behind pre-defined
message sets and message characteristics as used in classical communications systems.
This proposition is based on the fact that the overall goal of a distributed system
in the context of safety/efficiency-related ITS shall be the timely distribution of
relevant information whereas this relevance is a receiver-based criteria. Thus, it is
more an information-centric receiver-oriented communication than conventional
message-centric sender-oriented communication which dominated in the past.

Information-centric receiver-oriented communication distributes information
according to the worth of the information for the receivers

3Sender and receiver are only logical roles of ITS entities taken during a message exchange, thus,
an ITS entity can be sender and receiver, even in parallel



Chapter 4: Backward Integration: Decisions for optimized evidence exchange 117

In this work we break down our concept for information-centric receiver-oriented
communications into three messaging types:

e Information dissemination: An entity decides on its current state of knowledge
to disseminate information which it gathered from local sensors.

e Information gathering: An entity detects that a specific kind of information
would be of high importance and thus initiates a request.

e Information forwarding: An entity receives information from another entity
and decides to forward it.

Each messaging type will be set up with novel concepts for information-centric receiver-
oriented communication strategies in one of the following sections.

4.1 Information Dissemination

Generally, information is more interesting for an entity if it does not know it, or, for the
case of intelligent entities, if it cannot predict it. This fact applies for human beings
as well: the outcome of tossing a coin has a very high relevance to interested people
because nobody can predict the outcome. If this coin is loaded and in the majority of
cases shows the same side, the outcome is only less surprising and, hence, less relevant
to the observers. If we transfer this example to the cooperative situation estimation
in future ITS, disseminating information which is obvious to other nodes because it is
fully predictable is not worth sending it. It would consume bandwidth and may collide
with other messages which may be more relevant. So, an intelligent system has to
differentiate the degree of “surprise” which is the level of uncertainty reduction of the
information it can communicate to other nodes.

Postulating that nodes in each others’” communication range are aware of the same
information and have the same prior knowledge about the information dynamics, they
will anticipate similar situations using the prediction equation 3.6 on page 74. Every
time new evidence is generated by autonomous sensing, e.g. by a new GNSS position
measurement, the dynamic situation estimation updates the prediction of the situational
information with the likelihood function using the update equation 3.7 on page 75. The
difference in the uncertainty before and after incorporating the evidence is a measure
for the worth of the evidence in the current situation. Hence, the prediction creates
uncertainty in the situational information and the update reduces uncertainty as it was
shown in figure 3.8 (equation 4.8 provides the respective proof). Thus, the prediction of
a future vehicle position increases the uncertainty and the GNSS measurement update
decreases the uncertainty.

The worth of information has to quantify the strength the situation estimation
utilizing this information differs from pure prediction
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118 4.1: Information Dissemination

A common measure for uncertainty is the entropy as it has been identified by
Shannon in his seminal article “A Mathematical Theory of Communication” [237]. Shan-
non defined the entropy H(X) for a discrete random variable X with a probability
distribution P(X) by:

==Y P(x) log P(x) (4.1)
zeX
With Ex being the expectation over the random variable X (or simply E if the respective
random variable is unambiguous)?, the entropy also can be written as:

1

H(X)=-ExlogP(X)=Ex—— 4.2
(X) = ~Bxlog P(X) = Bx o5 (42)
For a uniformly distributed random variable Xy = {x1,...,z,} the entropy can be
calculated by:
1,1
H(Xy) =— —log— =1 4.3
(Xy) == —log— =logn (4.3)

i=1
A uniform distribution has the maximum entropy because all states are equiprobable
and a prediction would be a complete leap in the dark. On the other extreme the
minimum entropy is zero which reflects a random variable with a certain outcome.
Thus, 0 < H(X) < logn.
For continuous random variables the entropy (differential entropy) can be approxi-
mated, e.g.:

Uniform distribution: H(f(x)) = loga(b — a) for f(x)= ,a<xz<b

1 z—p)?
Normal distribution: H(f(z)) = log2(oV/2me) for f(z) = o=
(4.5)

Additionally to the entropy definition for prior probability distributions, the en-
tropy can also be regarded in the context of background knowledge as conditional
entropy “of a random variable given another as the expected value of the entropies of
the conditional distributions, averaged over the conditioning random variable” [53]:

H(X|Y)=> P(y)H(X|y) = (4.6)

yey

==Y Py) Y Plaly)log Plzly) =

yey zeX

_ _Z ZP(y,:L‘) log P(z]y) =

yeY zeX
= _EX,Y log P(X|Y)

4The symbol E is used for expectation in order to clearly distinguish it from the evidence symbol F
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Thus, the difference in the entropy of X with and without the knowledge of the
random variable Y can be calculated by:

I(X:Y)=H(X)-HXI|Y) = (4.7)
= —Elog P(X)+ Elog P(X|Y) =
P(X]Y)

= Elog POX)

I(X :Y) is called mutual information [237, 189]. “It is the reduction in the un-
certainty of one random variable due to the knowledge of the other” [53]. The mutual
information represents the expectation of the logarithm of the relevance quotient which
was introduced in equation 2.10 as the ratio of the posterior probability to the prior
probability as part of the Bayes rule. A general rule is that the mutual information is
non-negative:

PX|Y)
P(X)
P(X)

= _Elog ——7/_
8 P(XY)

P(X

=Y PX,Y)log———2_

Z ( ’ )OgP(X‘Y)
XY

I(X:Y)=Elog (4.8)

o H(X)> H(X|Y) (4.9)

In ®) the Jensen inequality Ef(z) > f(Ex) for convex functions f [162] has been used.
The mutual information is equal to zero if and only if X and Y are unconditionally
independent (equation 2.3):

P(X|Y)

I(X:Y)=Elog PX)

=Elogl=0 (4.10)
Thus, additional information, in particular evidence from a source of infor-
mation, never increases the entropy. Although the logarithm of the relevance
quotient can be negative, its expectation is always greater or equal zero. Figure 4.4

graphically shows the composition of entropy, conditional entropy, mutual information,
ete.
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5 Cooperative ACC

Truth in science can be defined as the working hypothesis
best suited to open the way to the next better one.

Konrad Lorenz (1903-1989)

The previous chapters introduced the theoretical basis for layered probabilistic causal
decision networks and the respective inference algorithms as well as different kinds of
messaging types in order to optimally exchange information between distributed enti-
ties. To show the practical applicability, in this chapter an exemplary application named
Cooperative Adaptive Cruise Control (CACC) will be described in detail. CACC has
been chosen as application because it makes use of the whole functionality introduced
so far and thus is perfectly suited to evaluate the overall system performance.

From CC to CACC

Driving a vehicle across wide open roads with constant speed can be very monotonous
for the driver. Thus, in 1958 Chrysler produced a respective automation system called
cruise control (CC) for the first time. By switching it on at a certain speed, cruise
control automatically maintains this speed constantly as long as the driver makes no
interaction that overrules the automatic control. If the vehicle experiences an external
change in speed, e.g. when approaching an ascent or descent, cruise control accelerates
or decelerates the vehicle according to the desired velocity. Cruise control merely targets
for comfort increasing purposes.

In the last years an improvement of the conventional cruise control has been de-
veloped which further increases the comfort and also increases safety aspects by main-
taining a safe following distance to the preceding vehicle. It is known under the name
of Adaptive Cruise Control (ACC) [260, 222] or Autonomous Adaptive Cruise Control
(AACC) [258]. In contrast to conventional cruise control, ACC adapts the velocity
according to the distance to the preceding vehicle. Thus, if the preceding vehicle, in
remainder called the target vehicle, gets closer, by a lower speed of the target vehicle
or a higher speed of the ego vehicle, ACC automatically reduces the speed of the ego
vehicle. If the distance gets larger and the desired maximum speed adjusted by the
driver has not already been reached, ACC accelerates the ego vehicle. If no target
vehicle is detected, ACC speeds up the ego vehicle to the desired velocity which has
been chosen by the driver when the system was switched on.

Conventional ACC uses radar technology to measure the distance to the preceding
vehicle. Although todays radar systems provide distance measurements with a high
accuracy and reliability most of the time, radar technology has disadvantages in certain
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situations due to the limitation to the line of sight horizon and susceptibility to undesired
reflections. That is why the functionality is limited in areas with strong bends or
slopes, if the target vehicle is not in line of sight, or simply if the target vehicle is
too far apart to be detected. Furthermore, radar is only capable of detecting effects
of movement changes. That means radar can only detect a preceding vehicle already
coming closer and not the cause for the movement change which is for instance the driver
pressing on the brake pedal because she/he approaches the end of a traffic jam. This
situation cannot be handled with conventional ACC appropriately since radar distance
measurements are limited to the directly preceding vehicle, and thus, the system cannot
infer movement changes of vehicles in front of the preceding vehicle.

Figure 5.1a) shows a target vehicle which is not detectable by the radar system due to
a distance exceeding the maximum field of view of the radar. Conventional ACC radar
systems have a field of view of around 100-200m in longitudinal direction [240]. With
a speed of 180km/h which is not unusual on the German Autobahn a deceleration of
6.25m/s? is required to bring the ego vehicle to a halt if the target vehicle is for instance
the end of a traffic jam. Such a deceleration is hardly achievable on wet or icy roads
and is much more than the maximum comfortable deceleration of 2-3m/s* [255, 43].

In figure 5.1b) the target vehicle is leaving the radar field of view in a sharp bend
and thus cannot be detected any more. Accordingly, the ACC system will accelerate
the ego vehicle if the maximum velocity has not already been reached.

Figure 5.1¢) shows a highway approach. The target vehicle is located on the on-ramp
and may cut in but cannot be detected by the radar. For all three examples (figure
5.1a-c) the same detection problems are to be expected in case lidar or camera-based
systems are used for ACC instead of radar.

a) @ b) c)
/ P
©

a

Figure 5.1: Critical ACC situations: a) Target vehicle too far away b) Target vehicle
behind bend c¢) Target vehicle on adjacent on-ramp

These problems can be tackled by the usage of V2X communications which allows to
exchange various situational information between vehicles independent of their relative
direction and thus can provide additional sensor information, e.g. position, heading
and velocity, to the ego vehicle whenever the vehicles are in communication range. We
denote an ACC implementation that is capable of utilizing V2X communications as

Cooperative ACC' (CACC) [211, 210, 258, 257]. In diverse literature [133, 103] ACC
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systems which integrate the use of inter-vehicle communications in the control loop are
considered as the next step towards autonomous vehicle control systems.

5.1 Objectives and Impact

Besides commercial profits CACC will provide a benefit in terms of safety, efficiency
and comfort of driving in the following ways:

Safety

Almost 50% of all road fatalities in Germany per annum can be ascribed to
collisions with other vehicles (see figure 5.2). The 2353 road fatalities in 2007 are
caused by collisions with other vehicles which are more than 60% of all accidents
with injured happened in this year. Thus, a reduction of the vehicle collisions
will have a significant impact on the traffic injured and fatalities. Due to the
general functionality of the CACC system to regulate the distance to the preceding
vehicle, CACC has the potential to reduce the number of collisions. Falling below
the safe distance which includes at least the reaction time if the vehicles move
with the same velocity is automatically prevented by the system and thus the
risk of rear-end collisions with the target vehicle is decreased. By having a larger
detection range using V2X communications critical situations can be anticipated
much earlier than in the case only autonomous sensing technology is used. This
is also justified by the capability to exchange causes, e.g. a driver of one of
the preceding vehicles pressing on the brake pedal, which enables a much earlier
preparation of appropriate measures than if only effects, i.e. the position changes,
are observed. Furthermore, a more timely reaction of the system avoids fast
slow down maneuvers which otherwise would increase the probability of rear-end
collisions with the pursuing vehicle. According to Abele et al. CACC has the
potential to reduce the number of rear-end collisions by 25% [22]. Additionally,
a shift in the accident severity is anticipated. Hence, “20% of fatalities become
severe injuries and 20% of severe injuries become slight injuries” [22].
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Efficiency

The avoidance of fast slow down and fast acceleration maneuvers also increases
the efficiency of traffic, not only because collisions are prevented which otherwise
would decrease traffic flow efficiency, but also because string stability will be
kept [41, 154] and shock waves will be avoided [257]. Thus, inadequate accelera-
tions/decelerations can be reduced, the average vehicle distance can be shortened
and the average velocity can be increased. “Higher average velocity means higher
traffic throughput, lower RMS [root mean square] value of acceleration means lower
fuel consumption and lower air pollution” [154] which cannot be achieved to this
extent by conventional ACC systems (see figure 5.3). Furthermore, noise emissions
and material wear and tear can be reduced. The latter is achieved for instance
by an appropriate selection of braking devices, e.g. the wheel brake, the engine
brake or a recuperator, in accordance with the anticipated future movement.
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5.1: Objectives and Impact

Comfort

The avoidance of unnecessary accelerations and decelerations also improves the
comfort for the driver and passengers and account for an improved driving ex-
perience. Bringing about an artificial attenuation of strong accelerations or de-
celerations by limiting the maximum allowed acceleration/deceleration force to
a comfortable value will increase the safety risk potential and jeopardize string
stability respectively. Thus, the avoidance of strong accelerations and decelera-
tions can only be achieved by prospective situation analyses which is achieved by
a much broader and timelier sensing horizon.

A more technical objective of the proposed CACC application is to incorporate already
existing sources of information within modern vehicles and in parallel be open for new
kinds of sensors which will be established in vehicular environments in the future.
This can for instance be lidar technology or a camera system or the incorporation
of infrastructure-2-vehicle communications [257, 140]. V2X communications which can
be considered as another “virtual” sensor [211] shall be integrated into the existing
sensor system seamlessly not delimiting the functionality of any other system inside the

vehicle.
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Figure 5.2: Accident statistics broken
down to injured severity [2007] (numbers
from German Federal Statistical Office
[243])
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Furthermore, although this chapter focuses on CACC, the general architecture
shall facilitate a simple implementation of additional applications, such as Cooperative
Collision Avoidance or Pre-Crash Sensing [19, 55].
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N

1. Initialization: Set £ = 0 and draw /N samples {Sfj) ;=1 with equal

weight wé@j )= + from the proposal distribution P (S?j))
2. Increment k

3. State transition: Draw sample set {Sé“j) M4, from {Sfj}l}le,

j=1,..., N using the state transition distribution P(Sé“j) |Sé‘51)

4. Weight update: Compute the importance weight for each sample
wé) — P(Ek|88)), j — ]_, .. .,N

5. Normalization: Normalize the importance weights 1116.) =
’ll)k.
)
Zl]ilw?l)

6. Resampling: Generate a new sample set {S@-*)};\i:l with wé“j*) =

% by resampling with replacement of the N samples from {S(kj) é\le’
where the probability of resampling from each Sé“j) is proportional
to ﬁ)é"j)

7. Restart: Iterate to item 2

Figure 5.13: SIR particle filter algorithm [46, 136, 26]
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Figure 5.14: Evolution of the particle distribution (based on [46])
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Sample Importance Resampling (SIR) algorithm which is a special case of the Sequential
Importance Sampling (SIS) algorithm. The approach is also called “Survival of the
fittest” because only particles with high weights survive.

Thus, a particle filter recursively performs the three essential steps:

1. State Transition: Prediction of the state of the next time slice given the state
of the current time slice. For the first time slice the prior distribution is used.

2. Weight Update: Weighting of each individual particle according to the evidence
received (multiple times in case of multiple sources of information)

3. Normalization & Resampling: Resampling of the whole particle set according
to their weights

The complete algorithm is given in figure 5.13.

Prior Distribution Weight Update Normalization & Resampling
0 um = - I‘\ - s
E,
State Transition Weight Update Normalization & Resampling
k=1 % A 3?
| o] o] « =2 -
E,

Figure 5.15: Graphical depiction of state transition, weight update, normalization and
resampling with a particle filter used for target tracking

Figure 5.14 shows an abstract evolution of the particle distribution according to
the SIR particle filter steps. The first line shows the particle distribution according
to the probability distribution of the previous time slice P(S*|E%*~1) or the prior
P(SY%). When new evidence E* becomes available, the update process assigns weights
to the particles according to the likelihood of the evidence given the current situation
P(E*|S*). Normalization and resampling generates new particles according to their
weights with more particles in areas with high weights and less particles in areas with
low weights. The state transition predicts new particle states given the current particle
states and the algorithm is restarted.

In the concrete case of target tracking, the three steps state transition, weight update
and normalization/resampling are shown in figure 5.15 for the time slices £ = 0 and
k = 1. In this figure one can see two vehicles: vehicle 0 as the ego vehicle (left) and
vehicle 1 (right) as the target vehicle. In the first depiction (top-left), the particle distri-
bution according to the prior probability is rather wide with lots of possible hypotheses
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as long as no measurement has been incorporated. When the first measurement £
arrives particles near the measurement get high weights (top-center). After the first
normalization and resampling (top right) already most of the hypotheses were rejected
and only a few possible hypotheses are left. The estimation process restarts with a state
transition based on the latest particle set (bottom-left). After a new measurement Fj
has been received, particles near the measurement get high weights (bottom-center).
After normalization and resampling the particle distribution is centered around the real
target vehicle position (bottom-right).

t=0s
- .

.,
t=05s] . ., ¢

]

t=1s

L L]

Figure 5.16: Snapshots of the particle distribution for t=0s, t=0.5s and t=1s in a
multi-target tracking scenario (source: Rockl [216])

The inclusion of additional targets using JMPD for multi-target tracking adds
additional states to the state space of a particle. Thus, instead of using one particle
per target, one particle per scenario is used as proposed by Kreucher et al. [148]. A
scenario in this case is the whole vehicle constellation in the vicinity (see figure 5.16
and [216]).

5.4.2 CODAR Architecture

Since the objective of this work is to provide general concepts for cooperative situation
awareness for future I'TS systems, a general architecture shall be defined which enables
the support of various kinds of applications which utilize these concepts. The concrete
system setup which is used for CACC is shown exemplary. The general system archi-
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162 5.4: Prototype Implementation

tecture, called Cooperative Object Detection And Ranging (CODAR) basic architecture,
consists of 4 major modules (see figure 5.17):

Sources of information
The sources of information module provides information source specific elements
(e.g. sensor drivers, data base connections) as well as general functionality (e.g.
general sensor measurements, simple unit conversions, sensor discovery) for any
kind of information source, e.g. radar, GNSS, odometer, compass, V2X commu-
nications. The source of information module provides a standard interface to the
CODAR Engine module.

CODAR Engine

The CODAR Engine module encapsulates all algorithms for the situation esti-
mation. This includes the particle filter implementation, various measurement
models for diverse evidences, different state transition models, timers, etc. De-
pending on the state space, i.e. the set of situational information, used within the
state transition model, sources of information providing evidence which causally
depends on the situational information are automatically discovered and the
respective measurement models are loaded. The CODAR Engine provides a
standard interface to the Application module.

CODAR Application Framework

The CODAR application framework either allows standalone applications to regis-
ter for certain situational information or functionality for general decision-making
support. For instance, the CODAR Visualisation as depicted in figure 5.18
registers for situational information of type Target Vehicle. Every time situational
information of type Target Vehicle is updated within the CODAR Engine, the CO-
DAR Visualisation is informed. On the other hand, applications such as CACC
can register a decision space and utility functions to the CODAR application
framework. In this case, the framework connects to the appropriate situational
information, evaluates the utility functions when new situational information
becomes available and informs effectors of the best action.

Effectors
The effectors module provides general functions to connect applications to ef-
fectors. An effector in general is any kind of output device such as a vehicle
accelerator, brake, steering, dashboard display or V2X communications. The
module includes effector specific software (e.g. drivers) and general functionality
(e.g. effector discovery). Effectors provide a standard interface to the CODAR
application framework.

Each of the above presented modules of the CODAR basic architecture encapsulates a
specific system functionality. This strong encapsulation provides a clear separation of
concern which allows a flexible inter-linkage of modules. This is of particular importance
in the vehicular environment since each vehicle provides different types of information
sources and effectors from different suppliers with evolving interfaces. Furthermore,
a static inter-linkage would be disadvantageous regarding system reliability in case of
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sensor failures. From an efficiency perspective a static inter-linkage has to be managed
and maintained even if the sensor/effector is not required and, thus, has to be avoided.
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Figure 5.18: CODAR Visualisation with
Figure 5.17: CODAR Basic Architecture  uncertainty representation

lepey

All of these disadvantages can be tackled by a loose coupling of dynamic loadable
modules. In this case each module exposes a standardized interface by which it identifies
itself to other modules. The actual implementation is considered as a black box for
other modules. Herby, the CODAR Engine provides filtered situational information to
applications. The application does not need to know which kind of filtering has been
applied. It merely knows the filter service interface.

Service oriented architecture

The interaction between two modules is based on the usage of a service whereas one
module has the role of a service provider and the other as a service user (also known
as service consumer). If all interaction between modules is based on services, the
architecture is called a service-oriented architecture (SOA) [173, 245]. In a service-
oriented architecture every logical function which can be used by external modules is
considered as a service whereas a service is self-contained, modular, loosely coupled,
location-transparent, dynamically bound and exposes a network-addressable, coarse-
grained interface [173]. Thus, every sensor, processing algorithm, visualisation com-
ponent, etc. can be regarded as a service. Services interact by exchanging messages
whereas a message is triggered by an event. An event can be a sensor measurement
update, the availability of a new sensor, a user interaction, the detection of a critical
situation or a timer that triggers a certain process. Some of the services are required
over the whole runtime of the system, others only have a temporarily relevance. In
order to allow such a flexible service composition, a framework is required that allows a
loosely coupling of service instances. Furthermore, dependencies between services have
to be resolved during runtime and a service lifetime management is required.

Thus, the CODAR implementation is based on the application framework OSGi
(Open Services Gateway initiative) [3, 21]. OSGi introduces a dynamic module system
which allows a loading and unloading of so called bundles during runtime. The bundles
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6 Evaluation

I have not failed. I've just found 10,000 ways that won't
work.

Thomas A. Edison (1847-1931)

In order to show the functionality of the algorithms and concepts which have been
introduced in this work, various simulations have been performed. For the perfor-
mance evaluation simulation is preferable to field operational tests because it allows
reproducibility in a fully controllable environment with no external disturbances. The
evaluation criteria have been chosen according to the specifics of Cooperative Adaptive
Cruise Control (CACC) but are also applicable to any application which requires
position information of the vehicles in the vicinity. The evaluation criteria are the
accuracy of positioning, the reliability against diverse failures, the CACC decision-
making functionality and the communication optimization.

6.1 Simulation Environment

For the evaluation of the different capabilities of the algorithms presented in this work,
in particular for the CACC application, a simulation environment provides the required
input to the sensor interfaces of the CODAR system (see section 5.4.2) and listens on
effector commands initiated by the CODAR application framework. Thus, instead of
real sensor drivers the simulation environment provides simulated sensor data through
the same interface as the sensor driver. Thus, no changes have to be made in the
CODAR bundles. In fact, the bundles are not aware whether they are running within
a real vehicle with real sensors and effectors or within the simulation environment with
simulated sensors and effectors.

The simulation environment called m3 which has been implemented to study the
performance of the proposed algorithms simulates a set of vehicles, drivers, the en-
vironment and telematics [214, 215] in the simulation loop. Vehicles are specified by
their maximum velocity, acceleration and deceleration and the drivers which control the
acceleration and deceleration act according to the Krauss model (see section 5.3.2.3 on
page 153, more details follow in section 6.1.2). The vehicles are bound to the roads and
thus no lateral control of the vehicles is required. Additionally, m3 provides software
components for timing, configuration, remote control, debug visualisation and logging
(see figure 6.1).
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Figure 6.1: CODAR running in the simulation environment m3

For every vehicle a set of sensors and effectors can be deployed. In the following
analyses every vehicle is equipped with a GNSS receiver, an odometer and a compass
and is capable of transmitting and/or receiving remote evidence (i.e. position, heading,
velocity) via V2V communications. Some of the vehicles are also equipped with a radar
which observes objects in the front of the vehicle. The effectors mounted to each vehicle
are the acceleration control, the brake and/or a display which visualizes the estimated
situation for each vehicle (see figure 5.18). The sensor simulations and the scenarios
which have been implemented will be explained in detail in the following. A tabular
listing is given in the tables 6.1-6.4.

6.1.1 Sensor Simulation

Global Navigation Satellite System (GNSS)

The simulated GNSS receiver uses the real position of the vehicle and adds a Gaussian
distributed error according to the normal distribution N(0,3) with mean Om and a
standard deviation of 3m independent in X and Y direction. The update rate of the
GNSS receiver is 10Hz.

Radar

The simulated radar sensor has an opening angle of Hrad = 0.157rad = 9°. The radar
is mounted at the front of vehicle (in center) observing the headway of the vehicle with
4.5° to the left of the vehicle and 4.5° to the right. The maximum range is limited by
100m. If a target vehicle is located within the radar beam, its real position is altered
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by a Gaussian distributed error according to the normal distribution N (0, 1) in meters.
The update rate is 10Hz.

Compass

The simulated compass provides heading information of the vehicle. It adds a Gaussian
distributed error to the real heading of the vehicle according to the normal distribution
N(0,0.15) in radians. The update rate of the compass is 10Hz.

Odometer

The simulated odometer provides the velocity of the vehicle with a Gaussian distributed
error according to the normal distribution N(0,2) in m/s. The update rate is 10Hz.

V2V Communications

The simulated V2V communications allow to exchange information between vehicles
up to a range of 300m. The value is gathered from real-world measurements with
V2V communication hardware which is currently used for initial field operational tests.
Communication errors are modeled by a random packet loss model which can be
adjusted to the specific simulation interests between 0 (no packet loss) and 1 (100%
packet loss). Lower layer influences (e.g. fading due to multi-path propagation and
Doppler effect) are not simulated explicitly. These influences are only relevant for lower
layer analyses which are not part of this work.

6.1.2 Scenarios

The simulations are based on four different scenarios. Two artificial scenarios and two
real-world scenarios. The first scenario is a single-lane straight road with a length
of 5km (see figure 6.2). The second scenario is a single-lane road formed as octagon
with an arc length of 130m (see figure 6.3). Furthermore, two real-world scenarios
obtained from the Openstreetmap project [4] have been used. The third scenario is a
highway section between Inning am Ammersee and Oberpfaffenhofen on the highway
A96 (Lindau-Munich) in southern Germany (see figure 6.4) and the fourth scenario is a
curved mountain road between Bayrischzell and Unteres Sudelfeld in southern Germany
(see figure 6.5).

Each of these scenarios contains two vehicles, vehicle 0 (ego vehicle) and vehicle 1
(target vehicle), which move on the road network. Each vehicle has a length of 4m and
a width of 2m and acts according to the Krauss model or the decision-making algorithm
presented in the previous chapter.

Scenario 1 (Straight Road)

The straight road scenario contains a single-laned straight road with a length of 5km
(see figure 6.2). The lane width is 3m. In the startup constellation both vehicles
are separated by 50m. Vehicle 1 (target vehicle) drives in front of vehicle 0 (ego
vehicle). Both vehicles drive from left to right. Vehicle 1 (right) accelerates with an
acceleration of 2m/s? (desired velocity of the movement model) to its maximum desired
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174 6.1: Simulation Environment

velocity of 20m/s (see table 6.1). If not specified explicitly vehicle 0 follows according
to the deterministic version of the Krauss model with a desired velocity of 20m/s, a
reaction time of 2s and a safety distance of 5s (in the table abbreviated by Krauss model

(20,2,5)).

Figure 6.2: Scenario 1: Straight Road

Scenario 2 (Octagon Road)

Scenario 2 (Octagon Road) is a single-laned road formed as octagon with an arc length
of 130m and rounded curves approximated by 3 short road segments. The lane width
is 3m. Vehicle 1 is located in front of vehicle 0 and both vehicles drive clock-wise on
the octagon. If not specified explicitly, the vehicles behave according the parameters of

table 6.2.

Figure 6.3: Scenario 2: Octagon

Scenario 3 (A96)

The third scenario is a highway section between Inning am Ammersee and Oberpfaf-
fenhofen on the highway A96 (Lindau-Munich) in southern Germany. The length is
10.7km. The scenario is located within the bounded box spanned by the latitude/lon-
gitude coordinates (48.03° N/11.12° E) and (48.10° N/11.30° E) in WGS84. Since no
lateral control of the vehicles is intended the highway is reduced to a single lane with
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a lane width of 3m. In the startup constellation vehicle 0 is already located on the
highway 30m in front of the approach 30 Inning am Ammersee. Vehicle 1 is located
on the highway approach. In contrast to the previous scenarios the vehicles drive with
high speed (up to 36m/s). If not specified explicitly, the vehicles behave according to
the parameters given in table 6.3.

Figure 6.4: Scenario 3: Highway A96

Scenario 4 (Tatzelwurm)

Scenario 4 is a curved mountain road with a length of 4.7km from Bayrischzell to
Unteres Sudelfeld. The route also called Tatzelwurm is located within the bounded
box spanned by the latitude/longitude coordinates (47.74° N/11.96° E) and (47.65°
N/12.01° E) in WGS84. In contrast to the previous scenarios, Tatzelwurm has sharp
curves (up to 180°, marked with 1 and 2 in the figure). In the startup constellation
both vehicles are located on the Alpenstrasse. Vehicle 0 starts behind vehicle 1 with
a distance of 100m. If not specified explicitly, the vehicles behave according to the
parameters specified in table 6.4.

Figure 6.5: Scenario 4: Tatzelwurm
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Vehicle 0 (ego vehicle)

Vehicle 0 (ego vehicle)

Start position (0m,0m) Start position (0m,0m)
Max. velocity 25m/s Max. velocity 15m/s
Max. acceleration 3m/s? Max. acceleration 2m/s?
Max. deceleration 5m/s2 Max. deceleration 5m /s>

Driver behaviour

Krauss Model (20,2,5)

Driver behaviour

Krauss Model (15,2,5)

Sensors Radar, GNSS, Compass, Sensors Radar, GNSS, Compass,
Odometer, V2X (10Hz) Odometer, V2X (10Hz)
Effectors Acceleration (10Hz) Effectors Acceleration (10Hz)

Vehicle 1

(target vehicle)

Vehicle 1

(target vehicle)

Start position (50m,0m) Start position (200m,0m)
Max. velocity 15m/s Max. velocity 10m/s
Max. acceleration 3m/s? Max. acceleration 2m/s?
Max. deceleration 5m /s? Max. deceleration 5m/s?

Driver behaviour

Krauss Model (20,2,5)

Driver behaviour

Krauss Model (10,2,5)

Data dissemination

Position-Heading-Velocity

Data dissemination

Position-Heading-Velocity

(10Hz) (10Hz)

Sensors GNSS, Compass, Odome- Sensors GNSS, Compass, Odome-
ter (10Hz) ter (10Hz)

Effectors V2X (10Hz) Effectors V2X (10Hz)

Table 6.1: Scenario 1 (Straight Road)

Table 6.2: Scenario 2 (Octagon Road)

Vehicle 0 (ego vehicle)

Vehicle 0 (ego vehicle)

Start position

(48.084638° N lat,
11.15198m/s2 lon) WGS84

Start position

(47.67685°N lat,
12.020348°E lon) WGS84

Max. velocity 36m/s Max. velocity 17m/s
Max. acceleration 3m/s? Max. acceleration 3m/s?
Max. deceleration 5m/s? Max. deceleration 5m/s?

Driver behaviour

Krauss Model (20,2,5)

Driver behaviour

Krauss Model (17,2,5)

Sensors Radar, GNSS, Compass, Sensors Radar, GNSS, Compass,
Odometer, V2X (10Hz) Odometer, V2X (10Hz)
Effectors Acceleration (10Hz) Effectors Acceleration (10Hz)

Vehicle 1

(target vehicle)

Vehicle 1

(target vehicle)

Start position

(48.083939° N lat,
11.153827°E lon) WGS84

Start position

(47.677931° N lat,
12.019417° E lon) WGS84

Max. velocity 30m/s Max. velocity 15m/s
Max. acceleration 3m/s? Max. acceleration 3m/s?
Max. deceleration 5m/s? Max. deceleration 5m/s?

Driver behaviour

Random Speed Model

Driver behaviour

Random Speed Model

Data dissemination

Position-Heading-Velocity

Data dissemination

Position-Heading-Velocity

(10Hz) (10Hz)

Sensors GNSS, Compass, Odometer Sensors GNSS, Compass, Odometer
(10Hz) (10Hz)

Effectors V2X (10Hz) Effectors V2X (10Hz)

Table 6.3: Scenario 3 (A96)

Table 6.4: Scenario 4 (Tatzelwurm)
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6.2 Simulation Results

In the following, various simulation results will be shown using these scenario definitions.
The results show the improvements of the situation estimation, the improvements of the
decision-making functionality, the improvements in the communications and runtime
performance analyses.

The evaluation criteria will be explained in the individual sections. In case point
estimations are compared, the point with the minimum mean square error (MMSE)
[46, 122] has been used:

MMSE(S|E) =) _S-P(S|E)= > p.S-puweight (6.1)
S

pEParticleSet

If not stated explicitly, the position-heading-velocity movement model of section 5.3.2.1
has been used for the situation estimation.

6.2.1 Runtime Performance

In order to evaluate the runtime performance of the algorithm, various simulation runs
with different numbers of particles have been performed. The simulation hardware
was a standard Fujitsu-Siemens Lifebook (E-Series) with Intel Core”™ 2 Duo T7500
(2.2GHz) CPU and 2GB RAM. The operating system was a Windows XP Professional
with service pack 3 and Sun Java 1.6.0. The results are shown in table 6.5.

# of Particles | Total runtime | Real time ratio | Memory | Accuracy

(in s) (in %) (in MB) (in m)
100 18.781 3.13 7.57 1.18
200 35.250 5.88 8.17 0.91
500 89.937 15.00 8.17 0.68
1000 182.500 30.44 8.54 0.66
2000 405.593 67.64 9.73 0.64
5000 1061.969 177.11 13.30 0.60

Table 6.5: Runtime performance comparison

The simulations used scenario 2 (Octagon) because of the circular road course and
ended automatically after a duration of 600000ms (10 minutes) of simulation time. The
simulation time source incremented the time immediately after the whole time step
has been processed without any additional waiting time. Thus, the runtime (in real
time) merely depended on the problem complexity. The runtime in real time is shown
in the second column of the table. The average ratio between simulation time and
real time is shown in the third column of the table. It almost increases linearly. In
order to gain real-time capabilities' not more than 2000 particles shall be used with

'Real-time capability is achieved if real time ratio < 1 which means that a certain amount of time
required for calculation (i.e. runtime) is less or equal to the real time

N=]
-
(]
+~
(o8
2]
<
O




N=]
-
Q
+~
o
3]
<
O

178 6.2: Simulation Results

this system configuration. The memory required to perform the simulation is shown in
the fourth column of the table. The numbers are based on the Java measures which
can be requested from the API. Due to the automatic garbage collection the numbers
are only partially meaningful. The last column of the table shows the distance error
between real distance and estimated distance between ego and target vehicle. The error
decreases with an increasing number of particles. With particle numbers less than 1000
a strong accuracy gain can be detected with every increment. With higher number of
particles the gain gets smaller.

A trade-off between accuracy and real-time capability is given by a number of 2000
particles. Thus, the particle filter used to perform the simulations in the following
sections was implemented with 2000 particles in vehicle 0 (ego vehicle) for the estimation
of the state of the ego and the target vehicle. In section 6.2.4 also vehicle 1 runs a particle
filter. This particle filter will only track the state of vehicle 1. Thus, the state space
has only half the cardinality and we limited the number of particles to 1000 for vehicle
1.

6.2.2 Improved Situation Estimation

14
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Figure 6.6: Ego position error with and without filter application in scenario 1 (Straight
road)

6.2.2.1 Increased accuracy

In the following sections the accuracy gain in terms of position accuracy is evaluated.
The gain is achieved by the application of the filter to the inaccurate and incomplete
evidences from GNSS, odometer and compass. Since the main focus of these analyses is
the evaluation of the position accuracy, the gain of the filter is evaluated in contrast to
the raw GNSS position measurements which can be tapped from the m3-Sen interface
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Figure 6.15: Positioning solely based on compass measurements (1Hz update rate) and
road network as soft indication for vehicle location

According video files which show the whole simulation run can be found on the
CODAR website [209].

Message loss

Figure 6.16 shows the distance error between ego and target vehicle for the message
loss ratios 0.5, 0.7, 0.9 and 0.95 using scenario 1 (Straight Road). A message loss ratio
of 0.5 means that of all the evidence updates generated from the 10Hz-sensors of the
sender only an average of 50% is actually received by the receiver. The accuracy of the
distance estimation for this receiver is depicted in the figure. Evidently, the mean error
grows with an increasing message loss ratio (1.78m — 2.18m — 2.27m — 6.27m). The
standard deviation increases accordingly (1.28m — 1.84m — 2.28m — 8.30m).

6.2.3 Improved Decision-making

Up to now, the ego vehicle only performed a situation estimation without decision-
making functionality. In the following simulations the ego vehicle evaluates the situation
according to the decision-making algorithms introduced in section 5.3.3 and actually
controls the acceleration of the ego vehicle in the simulation environment. Thus, the
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Figure 6.16: Ego-Target distance error with with filter application and different message
loss ratios (Scenario 1)

CACC system runs in a closed loop which perceives the environment, estimates the
situation, derives best actions, changes the environment by accelerating or decelerating
and starts over.

The sensors used in the ego vehicle in the following simulations are odometer,
compass, GNSS and cooperative sensing via V2V communications. The target vehicle
provides compass, odometer and GNSS measurements via V2V communications. The
decision-making algorithm differentiates two actions accelerate and decelerate which
control the acceleration/brake effector with an acceleration of 2m/s? and the brake
with a deceleration of 2m/s? [170].

Figure 6.17 shows a simulation run with a duration of 30s using scenario 1 (Straight
Road). The target vehicle moves with a constant speed of 10m/s. The figure shows
the real distance between the vehicles which circulates around 19.82m with a standard
deviation of 0.88m. Changes in the distance result from a varying acceleration of the ego
vehicle based on the maximum expected utility which is calculated from the estimated
speed of the ego vehicle and the estimated distance between ego and target vehicle. The
estimated distance error is depicted in the figure as well. In the upper part of the figure
the difference in the expected utilities (equation 3.20 on page 104) for the acceleration
and the deceleration action is depicted:

Utility Difference = EU***(accelerate| E**) — EU*™! (decelerate| E**) (6.2)

A utility difference greater than zero, will accelerate the vehicle and a utility difference
less than zero, will decelerate the vehicle according to the maximum expected utility
principle for dynamic systems (equation 3.26 on page 110). Due to the constant
movement of the target vehicle the difference in the expected utility between both
actions is rather low.

Figure 6.19 shows a similar simulation run. Again the duration is 30s and the
scenario is scenario 1 (Straight Road). The difference to the previous simulation is the
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Figure 6.17: Expected utility difference, distance estimation error, real distance, and
speeds (target vehicle moves with constant speed of 10m/s in scenario 1)
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Figure 6.18: Gap time (target vehicle moves with constant speed of 10m/s in scenario

1)

changing speed of the target vehicle. First the target vehicle accelerates from 1m/s
to 8m/s, then it decelerates to 3m/s, then it accelerates to 7m/s and decelerates to
3m/s. In this simulation run a clearer separation between the expected utilities of the
accelerate and the decelerate action becomes visible. This can be explained due to the
changing velocity of the target vehicle. During a deceleration of the target vehicle the
accelerate action often has a considerable lower expected utility than the decelerate
action.

In contrast to the previous simulation, the distance strongly varies between 3m and
14m. In order to provide a better comparison, figure 6.18 and 6.20 show the gap time
calculated by GapTime = Distance/EgoSpeed (with real values obtained from the
simulation environment) for both simulation runs. As it was mentioned in section 5.3.3
the maximum expected utility shall be around 1.8s gap time using the proposed utility
functions. The simulation runs show a mean gap time of 1.99s and 1.86s with a standard
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1.3Hz. Thus, in order to have an error below 3.8m, a reduction of the required update
rate of 87% (or 75%) is achieved with the filter application.

6.2.4.2 Information Gathering
LC
accelerate 0.75*Safety+0.25*Efficiency
brake
LD left center right
LC acc | dec|acc|dec|acc [dec
Utility |0.5]/0.5 |0 1 ]05]05
P(LD) left
Lateral left 0.33
Distance center 0.33
right 0.33
LD LD
P(RLM|LD)| left |center| right P(VLM|LD)| left |center| right
left 06 |0.05 |0.15 Radar Lateral V2V Lateral left 08 |01 |o
center 025 |09 |0.25 Measurement Measurement_” [center |02 [08 [0.2
0.15 |0.05 | 0.6 0 0.1 |0.8

right right

LD left center right
LC acc | dec | acc | dec | acc |dec
Utility |1 [0 |1 |0 (1 O

Figure 6.31: Longitudinal Control decision based on the Lateral Distance with evidence
from radar and V2V

In the following the decision algorithm for interest propagation as introduced in sec-
tion 4.2 will be analysed for multi-lane roads. On a road with multiple lanes in the same
direction the ego vehicle has to determine the actual lane the target vehicle is driving
on. If for instance the ego vehicle is located on the center lane of a three-laned road, the
target vehicle can be located on the same, the right or the left lane. These three states
are denoted as center, right and left of the situational information Lateral Distance
(LD) in the following. Evidence to determine the situational information is given by
Radar Lateral Measurements (RLM) and V2V Lateral Measurements (VLM) (with
GNSS information transmitted via V2V communications plus heading measurement or
map-matching alternatively) with the same states as Lateral Distance. Additionally,
a utility hierarchy with three utility functions is specified which take into account the
state of Lateral Distance. One utility function determines the traffic Safety utility.
Another utility function determines the traffic Efficiency utility. The third utility
function calculates a weighted average of Safety and Efficiency utility with a 3:1
weighting. The decision to make differentiates the two states accelerate and decelerate.
The whole probabilistic decision network is depicted in figure 6.31.

In the example, the radar sensor quality is very high for target vehicles located in
the center of the radar beam. False estimations only occur with a probability of 0.1
(0.05 left and 0.05 right). On the other hand, if the target vehicle is located on the left
or the right lane, the sensor quality is worse, e.g. due to reflections on the guard rails.
False estimations occur with a probability of 0.3 (0.25 center and 0.05 for the opposite
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Figure 6.32: Variation of the Value of Information with evidences from radar and V2V
communications

lane). For the cooperative sensing with GNSS position information transmitted over
V2V communications, the sensor quality is independent of the target position since it is
not based on relative vehicle constellations. False estimations occur with a probability
of 0.2. The situational information Lateral Distance has a uniform distribution since
the usage of the lanes is assumed to be equal. The Safety utility is uniformly distributed
in case the target vehicle is located on another lane because this vehicle will not pose
any safety threat. If the target vehicle is located on the same lane, the Safety utility is
high for the deceleration and low for the acceleration. A more detailed dependency, e.g.
with speed and longitudinal distance, will go beyond the scope of this example and is
therefore omitted. Thus, a (0/1) distribution for (accelerate/decelerate) is defined. The
Efficiency utility assigns a value of 1 to the accelerate action and a 0 to a decelerate
action independent of the Lateral Distance.

If no evidence is available, the state of Lateral Distance is uniformly distributed,
cach state with a probability of 1/3 (see left-most depiction in figure 6.32). In this
case there is a tie between the actions accelerate and decelerate. Both have a utility of
0.5. The value of information (Vol) calculation provides a value greater than zero to
both evidences. A Radar Lateral Measurement has a value of 0.11 and thus carries
more information than a V2V Lateral Measurement of 0.10. These calculations are
independent of the actual state of the evidence which is unknown up to now. Thus,
the decision algorithm requests a radar measurement (e.g. by sending the according
CAN RTR frame [117] on the respective CAN bus) or listening for an appropriate CAN
frame on the respective CAN bus.

When the radar measurement is received, the input node Radar Lateral Measure-
ment can be updated with the new evidence. If, for instance, the radar measured a
center state, the Vol of the V2V Lateral Measurement reduces to 0.07 because both
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Figure 6.33: Variation of the maximum expected utility (MEU) with different outcomes
of the V2V evidence after observing the radar evidence left

evidences are dependent due to the common cause Lateral Distance. Thus, the belief
in the center state as the actual outcome of the V2V Lateral Measurement already has
a probability of 59%. But the Vol of V2V Lateral Measurement is still positive and
thus is expected to provide a value for the decision-making. This is justified since after
the incorporation of the center state from Radar Lateral Measurement the expected
utility (EU) for the decelerate action raises from 0.5 to 0.62 and thus represents the
maximum expected utility (MEU) but in case the additional acquisition of V2V Lateral
Measurement provides a different state than center (left in the right-most depiction
of figure 6.32) the MEU switches to 0.51 for the accelerate action. Thus, the best
action changes from decelerate to accelerate by the acquisition of the V2V Lateral
Measurement. Thus, in this example requesting position information from the target
vehicle via V2V communications may provide a valuable benefit for the action decision-

making.
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It has to be noted that the Vol is not a general evaluation on a per-sensor basis
but is based on the actual outcome level as explained in section 4.2. This can be seen
in figure 6.33. The figure is based on the same parameters as the previous evaluation
but instead of the center state as the outcome of the Radar Lateral Measurement the
radar provided a left measurement. The best action a* accordingly is accelerate with a
MEU of 0.60. In this case the Vol for the V2V Lateral Measurement is 0 whereas in the
previous analysis it was 0.07. The figure also shows the situation after the acquisition of
V2V Lateral Measurement. If it provides as well the left state the best action evidently
is accelerate. If it provides the center state still accelerate is the best action and even
if it provides a right measurement the best action is accelerate. Thus, independent of
the outcome of the V2V Lateral Measurement the best action is always accelerate and
thus the Vol is zero.

The simulation results of this section showed that an information-centric data dis-
semination approach as introduced in this work enables a very flexible bandwidth
utilization which takes into account the actual worth of information. Figure 6.30 showed
that a reduction in the information dissemination is feasible with slightly increasing
but manageable loss of accuracy. Jumping to the conclusion to finally reduce the
update rate to a lower constant value without an information-centric priority handling
will be dramatic since important evidence may be discarded by a static scheme. As
it was shown in figure 6.27 and 6.28 worth may reside in a single evidence in case
this evidence provides for instance a turning maneuver (figure 6.27) or the evidence
has a infrequent update rate (figure 6.28). In this case an information-centric data
dissemination approach shows its exceptional potential.

In the interest propagation the value of information algorithm even takes into
account actual outcomes and thus determines the worth of information for decision-
making of individual receivers. The results depicted in figure 6.32 and 6.33 confirmed
the functionality and showed that a static evaluation on a per-sensor level cannot cope
with the targeted objectives.



Research is to see what everybody else has seen, and to
think what nobody else has thought.

Wernher von Braun (1912-1977)

In conclusion, some final remarks will highlight the major achievements that have been
accomplished in this work and point out potential future continuations.

7.1 Summary

This work was devoted to elaborate the cooperative situation awareness in the field of
information-theoretic research required in future I'TS systems with a plethora of wire-
lessly interconnected entities. Single entities normally cannot perceive all information
from their local sources of information which is required to perform optimal actions.
To extend the perception horizon, cooperative situation awareness is required. It is
achieved by the purposive exchange of information between the entities. Information
from other entities serves as evidence to improve the situation assessment performed in
each individual entity. Chapter 2 showed that situation models based on probabilistic
causal networks have the expressive power to represent and infer situations which are
inherently subject to uncertainty. They outperform other solutions in their capabilities
and thus represent a promising basis for future I'TS systems.

In order to make the theoretical concept of probabilistic causal networks applicable
to future ITS systems, the tailoring of the network to the problem-specific domain
has been presented in chapter 3. The chapter accompanies the information forward
along its path from the generation in the sources of information through the dynamic
probabilistic causal decision network to the selection of the concluding action with the
maximum expected utility. Along the whole path it is taken care that no information
is neglected, the uncertainty inherent to the information is utilized appropriately and
herewith the actual worth of the information is exploited.

Chapter 4 reverses this path and attempts to maximize the utility outcome by
cooperatively controlling the information flow from remote sources of information. This
is achieved by an exploitation of the knowledge within the dynamic probabilistic causal
decision network. The result is an information-centric receiver-oriented communications
approach which is shown to be a promising solution in future ITS systems. A prioritised
utilization of the wireless channel based on the worth of information finally yields an
optimal usage of the communications resource.
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An exemplary application named Cooperative Adaptive Cruise Control (CACC)
which is considered as one of the most promising, purposeful and enabling applications
has been identified. It improves safety, efficiency and comfort of transportation with ev-
ery additional vehicle equipped with V2X communications facilities. Chapter 5 provided
configuration and implementation details. The enabling framework called Cooperative
Object Detection And Ranging (CODAR) is based on a particle filter running inside a
self-configuring application framework. These concepts provide the required capabilities
for future extensions to enable a simple deployment of further applications.

The performance of the whole system and of CACC in particular is presented in
the evaluations of chapter 6. The evaluations have been performed by simulations
and showed in the respective analyses on situation estimation, decision-making and
communication optimization that the implementation significantly increases accuracy,
reliability and overall functionality. The pre-assigned requirements are met and the
system performs as expected.

7.2 Outlook

Evidently, this is just the beginning of information-theoretic research for future ITS.
In order to tap the full potential of the presented concepts further studies taking into
account additional sources of information (e.g. acceleration and brake pedal), state
transition models (e.g. anticipated driver behavior), elaborated utility functions (e.g.
cooperative long-term planning), etc. have to be performed.

The hidden state space which was introduced for CACC in section 5.3 included
only a minimum set of situational information required to perform first results. In
the future more situational information can be included (e.g. pavement condition,
movement histories of other vehicles, vehicle models, common positioning errors) in
order to gain an improved situation awareness and an improved decision-making. For
instance, movement histories of preceding vehicles can be used to learn the road course
in order to improve the position accuracy and improve the movement prediction even
without an explicit road topology map. The estimation of common positioning errors
(e.g. atmospheric effects) in the hidden state space allows a better relative positioning
to entities which are exposed to identical errors and thus it is worth to be studied more
in detail for an improved relative positioning.

In the communications optimization we limited the work to inspections of application
and network layer of the ISO OSI reference model. Definitely, this is not the only contact
point of information-centric communication optimizations. Further starting points are
improvements for medium access control (e.g. application-layer controlled adaptation of
the contention window) and even physical layer (e.g. channel coding depending on the
worth of information). Both have to be analysed more in detail and the identification
of further potential improvements based on a cooperative situation awareness shall not
fall into oblivion.

The prototype implementation of CACC already showed promising results but by far
is not complete to transfer into production. Further analyses are required, in particular
with field operational tests that inspect the performance in real-world environments
before a market introduction can take place in the upcoming years.
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The CODAR architecture has been designed having in mind a plethora of coop-
erative I'TS applications. It can be considered as an enabling technology for various
kinds of applications. Next steps are the implementation of further applications such
as Cooperative Collision Avoidance or Pre-Crash Sensing which, besides CACC, will
provide a considerable improvement for future road transport.

Finally, it remains to look ahead in anticipation what the future of transportation holds.
I am convinced fascination and suspense continues.

MR-
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Intelligent Transportation Systems (ITS)
became a fast moving field of research
in the last decades, in particular in the
context of continuously growing mobi-
lity and a high employment of resour-
ces starting from energy and material
consumption to travel time and finally
the human life. As it has already been
experienced in other application areas,
the introduction of communications
technology is able to bring a revolu-
tionary change in structures and be-
haviors long-believed to be carved in
stone.

This thesis provides concepts and
strategies that push forward the ex-
ploitation of information in a cooper-
ative way within a probabilistic
framework that allows to make various
kinds of decisions with maximum
utility. For the evaluation of the pro-
posed concepts, the exemplary appli-
cation Cooperative Adaptive Cruise
Control (CACC) has been implemented
on the basis of a particle filter which is
used for the situation estimation. Initial
simulations provided promising results
and hence constitute a solid basis for
future work in the field of Cooperative
Situation Awareness in Transportation.
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