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Automated Multidisciplinary Optimization of a Transonic 
Axial Compressor 

U. Siller∗            C. Voß†              E. Nicke‡ 
German Aerospace Center (DLR), Institute of Propulsion Technology, Cologne, 51147, Germany 

The current paper describes DLR’s optimizer AutoOpti, the implementation of the 
metamodel “Kriging” as accelerating technique, and the process chain in the automated, 
multidisciplinary optimization of fans and compressors on basis of a recent full stage 
optimization of a highly loaded, transonic axial compressor. Methods and strategies for an 
aerodynamic performance map optimization coupled with a finite element analysis on the 
structural side are presented. The high number of 231 free design parameters, a very limited 
number of CFD simulations, and conflicting demands both within the aerodynamic 
requirements and between the disciplines are a challenging optimization task. To navigate 
such a multi-dimensional search space, metamodels have successfully been used as 
accelerating technique. Using four aerodynamic operating points at two rotational speeds 
allows adjusting a required stability margin and optimizing the working line performance 
under this constraint. The investigated compressor concept is a highly loaded transonic stage 
with a single row rotor and a tandem stator, designed for a very high total pressure ratio. 

A. Introduction 
 
ompressors for aircraft engines are constantly developed towards higher aerodynamic loading to reduce the 
installation length, weight, and number of parts with no degradation in efficiency. This leads to more complex 

geometries and consequently to more complex flow structures. An automated optimization approach is to be 
preferred in order to take advantage of new design freedoms, while reducing or at least maintaining development 
time. Automated optimization is also suggested by recent progress in simulation technologies in several fields such 
as steady and unsteady computational fluid dynamics (CFD), structural and thermal finite element analysis (FEM). 
Moreover, processors have become increasingly powerful, and parallel computing on huge clusters can be 
considered state of the art technology for CFD and FEM applications. Thus, it has become possible to employ 
optimization methods in the design of various parts of heavy duty gas turbines and aircraft engines, even when 
calculations require large computational resources. 

B. Optimizer AutoOpti 
 
Multiobjective Optimization Strategies in Turbomachinery Design 
The simulation-speedup and the emergence of improved optimization algorithms nowadays enable the 

development and use of automatic optimization methodologies to perform complex multi-disciplinary and multi-
objective optimization processes in turbomachinery design. Such automated, computer assisted design-concepts 
have the potential to: 

• Create new design-ideas for turbomachinery components and support the engineer. 
• Reduce the number of design iterations within and between different disciplines like aerodynamic, 

structural and thermal analysis. 
• Generate design compromises between the disciplines. 
• Improve gas turbine performance and stability. 
• Reduce time and cost. 
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Evolutionary Algorithms, the Program AutoOpti 
Most of the newest multiobjective optimization methods are based on genetic or evolutionary algorithms 

(notation: EA) because of their potential to handle almost any kind of objectives (simple, very complex and even 
uncomputable objectives coming from non converged simulations).  

Different schools of evolutionary algorithms have evolved during the last 40 years: genetic algorithms, mainly 
developed in the USA by J. H. Holland1 and evolutionary strategies, developed in Germany by I. Rechenberg2 and 
H.-P. Schwefel3. Each of these constitutes a different approach, but they are both inspired by the same principles of 
natural evolution. For a good introductory survey see D. B. Fogel4. 

Evolutionary algorithms are stochastic search methods that mimic biological evolution. Most of them operate on 
a population of potential solutions applying the principle of survival of the fittest to produce better and better 
approximations to an unknown solution. At each generation, a new set of free parameters is created by the process of 
selecting individuals according to their level of fitness in the problem domain and breeding them together using 
operators borrowed from natural genetics. Just like in natural adaptation, this process leads to the evolution of 
individuals that are better suited to their environment than their predecessors.  

 
AutoOpti, the Basic Flowchart: 
The following flowchart in Figure 1 shows the basic structure of the MPI-parallelized multiobjective 

evolutionary algorithm AutoOpti5 which was developed at the Institute of Propulsion Technology in the past five 
years, with focus on turbomachinery applications. 

The root-process (grey) contains the 
optimization process (right hand side of 
figure 1). In order to calculate the fitness 
of a member (i.e. a set of values of the 
free parameters), it hands the member 
over to a slave process (orange) and 
upon termination receives its fitness 
values in return. The new member is 
stored in the database, and the Pareto 
rank (for a definition see Ref. 5) is 
updated for all stored members. In the 
next step some members (notation: 
parents) are selected from the database 
based on their fitness values and Pareto 
rank for the production of a new 
offspring. Several parents are recombined, using different operators like Mutation, Differential Evolution, and 
Crossover (see Ref. 4, 6, 7), to produce the offspring. Now, the fitness values (and some other values of interest) of 
the offspring are computed by a slave-process, and the cycle is performed until the optimization criteria are reached 
or the user aborts the program. 

The slave-process can be any transformation Φ of the following kind: 
Φ:   N K⎯⎯→ , with N = #{Free Variables} and K = #{Objective Values}            (1) 
There are no other mathematical constraints to that operator Φ (for example to be continuous or differentiable). 

Thus, this method has a large field of application without any constraints on the specific process-chain. 
In the next section, the most important special features of the program AutoOpti will be explained. These 

features distinguish AutoOpti from other optimization models and commercial tools. Most of them were developed 
in response to the enormous numerical effort of the process-chains in turbomachinery design (CFD and FEM for 
several operating points). Other features were implemented for a better handling and supervision of the optimization 
by the engineer. 

 
Database, Restart, Asynchronous Communication, Constraint handling: 
AutoOpti is not population based. The parents of a new offspring are selected from the current database of all 

evaluated members rather than from the previous population. The benefit of this method is an asynchronous 
communication between the root and the slave processes. In conventional evolutionary algorithms all slaves must 
wait until the slowest of them has finished before a new population can be generated. In contrast, the processor load 
in AutoOpti is almost 100% for all processes.  

Figure 1. Optimization Metamodel Interaction in AutoOpti. 
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Moreover, the database is essential for restart options and the setting up of metamodels (see next paragraph of 
this paper). For each member the set of free parameters, the objective values and all values of interest of a member 
(efficiency, mass flow, total pressure, total temperature, van-Mises stresses, … ) are stored. This leads to a huge 
number of stored values (several hundred for typical turbomachinery applications). These values enable: 

• A modification of the fitness functions at a restart of the optimization without any loss of information.  
• Optimization observation by the engineer. 
• Constraint handling: typical turbomachinery constraints can be monitored in consideration of these 

stored values. These constraints can be applied to the objectives and also to the values of interest. 
Unfulfilled constraints affect the Pareto rank and therefore the probability of selection of a member. 

 
Interface: 
The main drawback of EAs is the fact that they suffer from slow convergence because they use probabilistic 

recombination operators to control the step size and searching direction. It follows that - especially for expensive 
function evaluations – an EA typically requires a lot of CPU time.  

To deal with this problem (see next chapter), and to make the optimization more controllable for the designer, an 
interface to the optimization process has been implemented (see figure1). If during the optimization the root process 
detects any external design input in the interface (either by a human engineer or an external algorithm), these 
designs will displace the evolutionarily created offspring. Thus, the optimization process can learn from external 
information and engineer know-how. 

 
Approximative Models 
To accelerate and improve the optimization process, different approximative models were used. Since 

approximations are models of a simulation which is itself a model of reality, they are often called metamodels. The 
terms approximation, surrogate model, response surface and metamodel will be used synonymously throughout this 
paper. The interaction between the original optimization and the approximative models is shown in Figure1. 

While the original optimization is running (right hand side of figure 1), a second parallelized program is run for 
the training of metamodels and the optimization with these models (left hand side of figure 1) to find auspicious new 
members. Communication between these two programs occurs through the database (output of the original 
optimization and input for the metamodel training) and the interface (output of the metamodel optimization and 
input for the original optimization).  

The basic idea of process acceleration using metamodels is quite easy to explain: The goal of using a surrogate 
model is to provide a functional relationship of acceptable fidelity to the “true” function with the added benefit of 
computational speed. 

A metamodel is built using previously evaluated solutions in the search space and utilized to predict the fitness 
values of new candidate solutions. The transformation Φ (equation (1)) represents K unknown surfaces in an (N+1)-
dimensional space. Each evaluated member (x1, x2, ……,xN, f1, f2, ………,fK) composed of the free parameters xi 
and the fitness values fj, represents a point on these unknown surfaces. A metamodel is a second transformation  

φ:   N K⎯⎯→  (K new surfaces in 1N + ) which approximates or interpolates the previously evaluated 
members in the database in an appropriate manner. If the realization of the original Φ is very time consuming, like 
CFD or FEM processes, an optimization can perform much faster on its approximation φ.  

The optimization on the metamodel in general strives for different goals than the original optimization. The infill 
sampling criterion, known as the expected improvement function, determines the optimization goal on the 
approximative model. It tends to choose the design points most likely to improve the accuracy of the model and/or 
have a better objective values than the current best points8). 

 
Curse of dimension 
The main challenge in metamodelling is given by the set up and the training of the models in high-dimensional 

search spaces (keyword: the curse of dimension). The curse of dimensionality is a term coined by Richard Bellman 
to describe the problem caused by the exponential increase in volume associated with adding extra dimensions to a 
(mathematical) space. For example, 100 evenly-spaced sample points suffice to sample a unit interval with no more 
than 0.01 distance between points; an equivalent sampling of a 10-dimensional unit hypercube with a lattice with a 
spacing of 0.01 between adjacent points would require 1020 sample points: thus, in some sense, the 10-dimensional 
hypercube can be said to be a factor of 1018 "larger" than the unit interval9).  
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For typical turbomachinery optimization problems the number of available sample points for a metamodel (a few 
thousand evaluated members) is very small compared to the dimension of the search space (a few hundred free 
design parameters). 

The details of how to build and exploit approximations effectively in high dimensional spaces, the selection of 
different infill sampling criteria like expected improvement, the improvement of the optimization schemes on the 
surrogate models (using gradient information), the averaging method of several models, etc., keep metamodel-based 
optimization a thriving research area. 

The metamodels implemented in AutoOpti are Kriging models and Neural Networks. To clarify some typical 
difficulties, the Kriging procedure will be explained hereafter. 

 
Kriging:  
The Kriging model implemented in AutoOpti is outlined in Ref. 8. Let M be the number of sample points in the 

Database and N the number of free variables. A set of free parameters is denoted by 1( ,....., )Nx x x= , the vector of 
solutions (already evaluated members) for each objective is given by 1( ,..., )s My y y= . The correlation function 

between two sample points is called Cor, see eqn. (4), the mean value is β̂  (3), the vector r  (6) is the correlation 
vector between a new point and the samples ,1 ,( ,....., )i i i Nx x x= . The global model variance 2σ is calculated by 

equation (7) and the mean error 2s  of the prediction ˆ( )y x  (2) is given by equation (9). This error estimation 2s is 
very important for the infill sampling criterion (expected improvement) in AutoOpti. The hyperparameters kΘ and pk 
(4) and the regularization constant λ (5) are all obtained by minimizing the right hand side of equation (8). This 
minimization yields the same results than maximizing the Likelihood, an optimization task itself with roughly twice 
the number of free parameters (2N+1) than the dimension 
of the original sample points. For simplification, all the pk 
are determined by the same value p. Thus, the number of 
hyperparameters to be determined is reduced to N + 2. The 
minimization procedure is called the training of the 
Kriging-model and uses the gradients of equation (8) with 
respect to the remaining model parameters kΘ , p and λ. 
Difficulties during the training are the numerically 
expensive matrix inversion and the fact that minimizing (8) 
may lead to ill conditioned correlation matrices R. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 shows on the left the contour plot of a simple function 2:f →R R . The black points are the sample 

points, selected randomly on the surface (x,y,f(x,y)). The contour plot of the Kriging approximation, trained to 
approximate these sample points, is shown on the right hand side of figure 2.  
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Figure 2. Kriging approximation in 3 
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C. Automated and Multidisciplinary Optimization of a Transonic Axial Compressor 
 
The overall task of this optimization is a compressor 

stage geometry which promises the best possible 
aerodynamic compromise, based on multiple operating points 
to account for all essential performance map attributes. 
Structural and fabricational features are also to be 
considered. Key design parameters of this compressor stage 
design are listed in Table 1, figure 3 gives an idea of the 
blading geometries. These requirements are to be fulfilled 
with a transonic compressor stage consisting of a rotor and a 
tandem stator. The aimed total pressure ratio is relatively 
high for the tip speed used, resulting in bladings with a low 
aspect and pitch-to-chord ratio and a very high aerodynamic 
loading.  

The initial member for this optimization (performance 
map in figure 8) has been initially designed using in-house 
S2- and S1-procedures, manual design iterations and a few 
optimizations similar to the presented type. In the process, 
optimization strategies and methods were developed and 
substantial progress was made in the stage design. Several 
different stator configurations were investigated and the 
latest optimized configuration was altered in the stator region 
with very different blade numbers and the exit area was 
increased to generate an initial member with higher potential 
for use in the present optimization. With these modifications 
the good rotor performance of former configurations was 
maintained. However, flow separations in the supersonic hub 
region of the stator occurred together with higher than 
tolerated deviations of the working line mass flow rates and 
the exit swirl. The task of the automated optimization process 
was to solve these issues and to maximize overall 
performance. 

In the following this process is described together with 
information about geometry handling and the numerical 
setup. An overview of this process is shown in figure 4. 
 
Range-scaling: 

Initially, all normalized variables from the 
optimization process of each slave have to be 
transformed to real scale values in order to fit the input 
requirement of the Bladegenerator.  
 
Blade and Duct Parameterization 

The duct geometry is parameterized by a series of 
interpolating spline control points for the hub and tip 
contour. As seen in Figure 5, there are free, fix and 
group points. The free points are allowed to shift 
radially within certain limits. A “group” is used for the 
exit duct, where all points downstream of the “group 
leader point” (casing), a free point, replicate the same 
shift while the corresponding points on the hub 
contour are shifted so as to keep the area of the exit 
duct constant.  

Rotor 
Rotor Number of Blades 19 
Relative Inlet Mach Number at Rotor Tip 1.6 

Work Coefficient 
( ), ,

2

2 tot exit tot entry

Tip

cp T T

U

⋅ ⋅ −
 

1.02 

Specific Flow at Rotor Leading Edge [kgs-1m-2]  190.5  
Inlet Radius Ratio rHub/rTip 0.32 
Rotor Mean Aspect Ratio 0.85 
Rotor Average Pitch/Chord 0.45 

Stator I II 
StatorI/II Number of Blades 57 57 
Absolute Inlet Mach Number at StatorI Hub 1.2 
StatorI/II Mean Aspect Ratio 2.2 1.8 
StatorI/II Average Pitch/Chord 0.65 0.7 

 
Table 1. Stage Key Design Parameters. 

 

 
Figure 3. Compressor Bladings 

Figure 4. Process Chain for Automatic Compressor 
Optimization. 
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The presented optimization uses axis-symmetric hub and casing contours, but the process chain also supports 
highly complex, axis-asymmetric surfaces10. 

The blade geometries are modeled and generated with the in-house program Bladegenerator based on 
parametrical B-spline curves and B-spline tensor product surfaces. Inputs are a coarse 2D-grid of “construction 
streamlines” and a set of profile parameters for every construction profile, which describe the 2D-shape of a profile 
in a streamline-based coordinate system (m’,θ).  

Profile parameters are:  
• LE/TE angles,  
• Stagger angle,  
• LE/TE radius,  
• Spline control points for the shape of the 

suction side, 
• Thickness distribution to generate the 

profile pressure side on basis of the 
suction side. Inputs are the maximum 
profile thickness and its axial position 
(in the profile coordinate system), a fill 
factor for the front part of the profile 
(LE to maximum thickness) and a total 
profile fill factor. Additional parameters 
control the area distribution in the front 
and rear part of the profile and thereby a 
local curvature adjustment. 

• Parameters that control the asymmetry 
and shape of the edges.  

Using a thickness distribution in an optimization is beneficial, since the profile area as an important mechanical 
parameter can be controlled by the maximum profile thickness and the profile fill factor. 

Radial distributions can be used for all parameters. Using them is beneficial to reduce the number of free 
parameters, if the number and position of construction profiles results in a distribution of higher complexity than 
needed or intentionally to be permitted. Here a radial distribution was used for the rotor stagger angle (to avoid high 
local geometric gradients with negative impact on the manufacturability, especially close to the tip) and for 
parameters of the thickness distribution and LE asymmetry.  

Once the profiles are generated in 2D, they are transformed to their construction streamlines in 3D together with 
a stacking law. The circumferential position of the rotor profiles on their rotational construction stream surfaces is 
defined by an adapted center of gravity stacking law. In axial direction the profiles of all blade rows are scaled to fit 
inside an axial domain, specified by a leading and trailing edge curve (see figure 5). The leading edge curve of rotor 
and statorI is subject of optimization with 6 free points for the rotor and 5 for statorI. The stator stacking law is 
trailing edge for statorI and leading edge for statorII. 
The stator profiles are free to shift in circumferential 
direction except the hub profile of statorI. Thus the 
aerodynamically highly important relative position 
between statorI and statorII is considered. 

For optimizing the mechanical balancing of the 
rotor blade in circumferential direction a linear radial 
distribution is used for the construction profile θ-shift. 

 
Geometric Restrictions 
 Properties of construction profiles, such as fill 
factor, maximum thickness and position, maximum 
chord length, and many more, can be subjected to 
geometric restrictions. 
 Having passed these restrictions, the 3D blade is 
generated and another set of radial geometric 
restrictions can be imposed, e.g. extremum and 
monotonicity checks for profile parameters and/or 

Figure 5. Parameterization of Duct, Blade Edges and 
Location of Construction Profiles.  

Figure 6. Topology of the Computational Grid.  
Iso-k-surface at midspan.
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calculated attributes. The optimization presented in this paper had no geometric restrictions; all demands were 
satisfied with a rotor FE analysis and the manner and combinations of setting free parameter limits. 

 
Grid Generation 

The automated grid generation in the optimization process is performed by an extension of CFD Norway’s 
G3DMESH. The grid consists of 23 structured blocks with overall 1.3 million grid points in an O-C-3H topology for 
every blade row (Figure 6). The radial grid resolution consists of 64 grid layers with 11 layers in the rotor tip gap. 
The first grid distances at solid type boundaries are chosen for the use of a wall function (y+  ~ 50). 

Input for the grid generation process is a S2M-grid, generated by the optimizer based on the hub and casing 
contour, a given point distribution in an initial S2M-grid, and the blade surface geometry from the blade generation 
process. During the grid generation process fillet radii on rotor hub and stator hub/tip are also generated. 

The blade rows are connected by unstructured interfaces, a mixing plane between rotor exit and statorI entry and 
an unstructured axial interface between the two stators. 
 
Flow Simulation 

All calculations reported are conducted with TRACE in 
the version 6.1.28, a cell-centered finite volume Reynolds-
averaged Navier-Stokes solver, which is being developed 
by the numerics group at the DLR Institute of Propulsion 
Technology in cooperation with MTU Aero Engines 
specifically for the simulation of turbomachinery flows. 
For the turbulence closure the two equation Wilcox k-ω 
model was used. Theory and methods of TRACE as well as 
code validation on the basis of experimental results can be 
found in Ref. 11, 12, and 13. 

Beside TRACE two other flow solvers are supported: 
MISES from Drela and Youngren14 for profile section 
optimization and the inviscid through-flow method 
MAGELAN in a coupled simulation with TRACE by 
matching the flow information at interfaces between both 
CFD codes in an iterative procedure. For an optimization 
example using TRACE-MAGELAN see Ref. 15. 

In turbomachinery CFD the desired operating point is 
typically set by a static pressure boundary condition at the 
compressor outlet panel. In an optimization with a limited 
number of operating points this approach has the penalty of 
generating neither comparable flow kinematics between 
different members nor information about the location of 
the numerical stability limit.  

This problem was solved by implementing a controller in the 
flow solver TRACE, which adjusts the exit static pressure for a 
desired mass flow rate. The algorithm is based on the widely used 
PID approach, extended by an adaptive sensitivity adjustment. 
This ensures faster convergence and adapts the controller settings 
in the case of mass flow oscillations. Figure 7 shows normalized 
mass flow residuals for the stage entry and exit panel, the 
pressure signal, set by the controller at the stage exit and the 
composition of this signal by the proportional and integral part 
together with the weighting factor, which scales the controller law 
by the sensitivity of the actual compressor and operating point. 
 
Finite Element Structural Analysis 

Two FEM Solvers are linked to the process chain. The 
commercial code PERMAS (INTES GmbH) and the open source 
code CalculiX. Static structural calculations and dynamic analysis 
for a Campbell diagram analysis are implemented in the process 

Figure 7. Mass Residuals, Stage Exit Static Pressure, 
and Controller Terms. 
Mass controlled operating point at 100% rpm close to 
the numerical stability limit. 

 
Figure 8. Finite Element Analysis. Von-Mises 
stress distribution in the Initial Member rotor 
blade (CalculiX).
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chain. After post processing some characteristic stress statistics are stored in the database. 
These results can be used either as geometric constraint to discard geometries ahead of the much more expensive 

CFD simulations, or as input for an objective. In the presented optimization the maximum von-Mises stress is used 
as constraint. The stress distribution of the initial rotor blade is shown in figure 8. During optimization, the 
maximum tolerated stress limit is updated to stress values found for aerodynamically dominant members.  

Operating Points and Optimization Strategy 
 
Finding “the optimum” within the search 

space determined by the presented 231 free 
design parameters is impossible – especially 
when limited to just a few thousand fitness 
evaluations due to the expensive flow 
simulations in multiple CFD operating points. 
The complexity of the search space is 
somewhat reduced, because flow physics in 
turbomachines, e.g. on stream layers, leads to 
an interactional grouping of some parameters. 
A local objective “efficiency” on a given 
relative duct height is for instance dominated 
by the blading parameters, placed on the 
same blade height and of course the duct 
parameters.  

Under these circumstances it is crucial to 
carefully select a set of free parameters which 
potentially solves the optimization problem. 
Furthermore the acceleration technique with 
response surfaces or metamodels has been 
extensively used to drive the optimization in small steps in the right direction. 

In our process (figure 1) the optimization is fully controlled by the acceleration branch, since all members were 
created on the basis of an optimization on metamodels. Furthermore, a separate metamodel collective is trained for 
all flow-, performance- or even binary parameters like CFD convergence, needed for objective or constraint 
formulation. On these metamodels a multi objective optimization is conducted and a set of auspicious members 
selected. The frequency of this process is set by the time period needed to get a member trough all CFD and FE 
calculations and to make new information available in the database for the metamodel generation. 

The presented optimization tries to include all essential performance map quantities, namely the stall margin and 
the working line performance by efficiency, total pressure ratio, mass flow rate, and stage exit swirl. Especially stall 
margin and efficiency are highly negatively correlated, which means that a higher stall margin decreases the 
maximum possible working line efficiency. Thus, at least two operating points at design rotational speed are 
required, one at the working line and the other close to stall. Aircraft engine compressors with a broad working 
range of rotational speeds need these operating conditions at least at one additional rotational speed to ensure 
sufficient off-design performance. Consequently, our optimization is conducted with four operating points (orange 
circles in figure 8). The operating points are calculated subsequently with decreasing criticality with respect to 
convergence: 

• OP0: Near Stall at 100% rpm. Mass flow controlled on a rate, which is 6.5% lower than the targeted 
mass flow rate on the working line for the same rotational speed. This OP is near stall, thus a minimum 
stall margin can be derived by this point, the remaining reserve can not be determined.  

• OP1: Near Stall at 79% rpm. Mass flow controlled on a rate, which is 13.1% lower than the targeted 
mass flow rate on the working line for the same rotational speed. This point ensures the stall margin 
demands at part rotational speeds. 

• OP2: Working line at 100% rpm (ADP). A static pressure exit boundary condition is used to set the 
desired pressure ratio. Other important quantities are mass flow rate, efficiency, exit Mach number and 
stage exit swirl angle. 

• OP3: Working line at 79% rpm. A static pressure exit boundary condition is used to set the desired 
pressure ratio. Other important quantities are mass flow rate and efficiency. 

Figure 8. Aerodynamic Operating Points and Initial Member 
Performance Map 
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Objectives 
 Two simple fitness functions are used: The average working line efficiency (derived from OP2 and OP3) and the 
average stall margin (derived from OP0 and OP1). The arithmetic mean of both quantities is used due to a very 
similar stall margin–efficiency correlation at design and part speed and the demand for a constant performance 
improvement in the working range. 
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, 2 / 3,is OP OP correctedη in the working line operating points is calculated with a constant total 
pressure ratio. This is motivated by the experience from a former optimization, where blockage by endwall 
separation in the stator hub region was generated, reducing the effective exit area. Thus the compressor was 
throttled, resulting in a relocation of the operating point toward higher efficiency – rewarded by the fitness. The 
shown correction of the efficiency has proven to effectively prevent such tendencies. 
 
Constraints 
 The other requirements are treated with 
a region of interest (notation: ROI), a 
constraint in terms of a tolerance interval, 
which affects the Pareto-rank calculation. 
All deviations of specified parameters from 
its ROI-limits are summed up, the resulting 
value is minimized in a single objective 
optimization until all ROI are fulfilled. The 
ROI-intervals in the metamodel 
optimization are set more tightly than in 
the CFD-evaluation branch. In the 
metamodel optimization the constraints directly affect optimization alignment. In the evaluation process the ROIs 
help the engineer identify members with unacceptable 
constraint violations.  
 ROI were set for the exit swirl angle by its mass 
averaged absolute value (avoiding compensatory effects), 
for the mass flow rates in the working line operating points 
OP2 and OP3, and for the maximum von-Mises stress 
found in the FE-analysis of the rotor blade. The absolute 
Mach number at stator exit is controlled by the area of the 
exit panel, thus by the parameterization. 

Discussion of Results 
 

Pareto Front 
Figure 9 shows the status of the optimization and the 

Pareto front after 1250 convergent members (red symbols). 
Computational effort including the metamodel acceleration 
was about two months on 130 state of the art CPUs. 
Objective 2, the mean stall margin, is plotted over the 
mean working line stage efficiency, the first objective. 
This kind of diagram is commonly used in multi objective 
optimizations to observe the optimization progress and to 
identify dominant members. Smaller fitness values indicate 

Figure 9. Pareto Front. Fitness Values for all Member 
in the Database and Metamodel Predictions. 
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improvement; therefore superior members (with Pareto Rank 1, marked with green circles) are located toward the 
lower left corner. The fitness of the initial member, the starting point for this optimization, is denoted by the orange 
point. Black symbols represent predictions, generated by the Kriging algorithm at the end of the metamodel 
optimization. These members are to be 
evaluated by structural and CFD simulations. 
 In a first phase of the optimization a wider 
optimization interval for objective 2 was used, 
resulting in a broad distribution of the fitness 
values. Then the interval was reduced to 
maximize the progress in the region of target 
stability margin. A stripe pattern appears in that 
corridor (marked with “A” in figure 9), which 
represents members of one metamodel iteration 
and indicates the high prediction quality of the 
metamodel.  
 As final result of the optimization 
Member2532 was selected. It has about the 
same stall margin than the initial member 
(ignoring its mass flow deficit) but a 2.5% 
increased working line efficiency - a significant 
improvement. In the following the geometry 
and some aerodynamical aspects of this 
member are presented. 

 
Performance Map 

Figure 10 shows the compressor performance map of Member2532 in comparison to the initial performance 
map. In addition to the optimization operating points, speedlines and the working line have better resolved with 
more simulated points. Member2532 mass flow rates in the working line operating points are now on target and the 
stall margin was raised by a broader working range with a similar near stall total pressure ratio. The intermediate 
speed line with 88%rpm indicates a constant stability margin for the compressor working range and supports the 
optimization concept with four operating points. Working line efficiency has increased significantly by 2.5% with 
about the same improvement at 100% and 79%rpm. These results prove that the described optimization strategy and 
setup successfully dealt with the complex interacting optimization goals. 

 
Geometries and Aerodynamics 

Hub und casing contour (figure 11) has not changed 
significantly due to former optimizations with a similar 
setup in the duct part. The first parameter-fitness 
correlations that the metamodels identify are for duct 
design parameters, due to their global impact on flow 
conditions. A note on the “bump” ahead of the rotor 
leading edge in the casing contour (marked with “A” in 
figure 11): removing this feature only slightly affected the 
mass flow rate due to the casing spline characteristics. This 
corresponds to the finding that the duct control points close 
to the rotor leading edge go to their upper limits resulting 
in the maximum casing radius. Furthermore, duct 
contouring has developed in the casing stator region (“C”), 
an adaptation to the new stator blade numbers. 

The rotor leading edge (“B”), where only shifts of the 
control points in downstream direction were allowed, has 
changed for a more pronounced forward sweep keeping the same tip chord length. Interestingly, the benefit of the 
different leading edge shape overcompensated the penalty of a shorter chord. 

Figure 12 illustrates the 3D blading geometries. Due to a small hub-to-tip ratio (table 1) the rotor blade is highly 
twisted, has a low aspect ratio, and a moderate forward sweep. The shape of the rotor trailing edge of Member2532 
is more complex compared to the initial member. This indicates a change in the radial load distribution, found to be 

Figure 10. Performance Map. Member2532 in comparison to 
the Initial Member. 

 
Figure 11. Duct Geometry.  
Member2532 versus Initial Member 
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crucial for the performance 
improvements in the working line 
operating points (see radial 
distribution plot of stage isentropic 
efficiency in figure 13). Rotor 
incidence in the lower part has 
significantly changed to negative 
(“A” in the section Mach number 
distribution in figure 13), reducing 
the rotor total pressure ratio and 
thereby the shock strength and 
losses in the stator rows under 
working line conditions (left view in 
figure 13 with the isentropic surface 
Mach numbers on the blades). Stator 
section profiles have adapted to inflow angles and shock positions, keeping the pre-shock Mach numbers low in the 
near stall operating points with high boundary layer loading. 

Initially, the stronger bow in statorII resulted in a transport of low momentum fluid from the hub surface along 
the span, triggered by the statorI passage shock (working line OP) or high diffusion and the LE shock close to stall 
conditions. At some blade height that fluid joined with the wake of statorI, resulting in a greater separation zone 
(marked with “B” in the lower right Mach contour plots in figure 13).  

Member2532 resolved this issue by reducing the bow and using the statorI wake “body” to accelerate the flow in 
between the wake and the blade surfaces. This mechanism together with a slightly more separated relative stator 
positioning (blade-to-blade Mach number distributions in figure 13) resulted in an about centered, isolated statorI 
wake at statorII trailing edge with proper flow conditions close to the blade surfaces.  

Above 30% span the tandem stator of Member2532 works perfectly with a balanced loading between the stator 
rows and the statorI wake “dissolves” in the statorII passage, energized by the statorII suction side potential field. 
Close to the hub, the aerodynamic demands to be fulfilled by a stator system are extreme. The improvements 
achieved here by this optimization run represent almost the maximum possible under the given constraints: constant 
blade numbers, the axial gap with no stator overlapping, and no exchange of axial length between the two stator 
rows. Future work will tend to make these features accessible by optimization. 

 
Figure 13. Mach Number Distributions.   
Left:    Mach contour plot of blade suction sides;       Operating point: Working line, 100%rpm 
Center Left:  Upper: Rotor section Mach number at hrel = 30%;     Operating point: Working line, 100%rpm 
    Lower: Radial distribution of stage isentropic efficiency;   Operating point: Working line, 100%rpm 
Center Right:  Stator blade-to-blade Mach contour at hrel=10%;     Operating point: Near stall,  100%rpm  
Right:    Mach number in x=const. plane at statorII TE;     Operating point: Near stall, 100%rpm  

Figure 12. Blade Geometries. Member2532 versus Initial Member 
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D. Conclusion 
A highly loaded, transonic axial compressor stage has been optimized with DLR’s optimization process 

AutoOpti. Four aerodynamic operating points and a finite element analysis of the rotor blade were considered, 
enabling the optimization of both working line performance and stall margin for two rotational speeds under a 
mechanical feasibility constraint. Metamodel acceleration techniques allowed maximum design possibilities with the 
extremely high number of 231 free design parameters. Results show a significant improvement of the stage 
efficiency, extended stability margin while achieving the targeted mass flow rates and exit swirl angle. Including the 
finite element analysis of the rotor blade resulted in improved mechanical attributes. 
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