

Aeronautical Communications – An Important Enabler for Risk Mitigation

International Air Safety & Climate Change Conference (IASCC) 2010

Michael Schnell Institute of Communications and Navigation German Aerospace Center (DLR)

Overview

- Developments in Air-Traffic Management (ATM)
 - European air-traffic is expected to double by 2025/2030
 - New ATM concepts for more efficiency, greenness, and safety are developed (SESAR, NextGen)

- Consequences for aeronautical communications
 - Increased capacity for communications required
 - Paradigm shift from voice to data link communications,
 e.g. 4D trajectories cannot be handled by voice
 - State-of-the-art communications have to be supplemented by future communications concepts
 - Aeronautical communications has the potential to enable risk mitigation in the near future

State-of-the-Art Communications

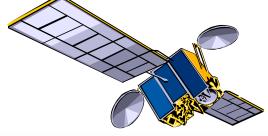
- Main pillar in communication between pilot and controller is still analog voice
- Recently first digital data links introduced

- "Double Sideband Amplitude Modulation" (DSB-AM) technology introduced more than 50 years ago
- ◆ Channel bandwidth 25 kHz (8,33 kHz introduced since 1999 for FL 245+ and since 2007 for FL 195+)
- Voice communication in HF-band (2,8-22,0 MHz)
 - "Single Sideband (SSB) Modulation"
 - Channel bandwidth 4 kHz, bad voice quality
 - Used for remote areas without VHF voice coverage

State-of-the-Art Communications

ACARS: Aircraft Communications Addressing and Reporting System

VDL: VHF (Very High Frequency) Digital Link HFDL: High Frequency (HF) Data Link


- Digital (data link) communications
 - ACARS: VHF, MSK with 2,4 kbit/s, for AOC only
 - VDL Mode 2: VHF, D8PSK with 31,5 kbit/s, CSMA, currently introduced in Europe
 - VDL Mode 3: Standardized but not introduced
 - VDL Mode 4: Standardized but not introduced
 - HFDL: HF, M-PSK with up to 1,8 kbit/s
- Satellite communications

Inmarsat: GEO (4), up to 432 kbit/s for SwiftBroadband,

less for Swift 64 and classic services

Iridium: LEO (66), up to 9,6 kbit/s

Globalstar: LEO (48), up to 9,6 kbit/s

State-of-the-Art Communications

State-of-the-art communications might not be sufficient for enabling efficient risk mitigation

- Available data link capacity and data rates
 - Missing connectivity between data links

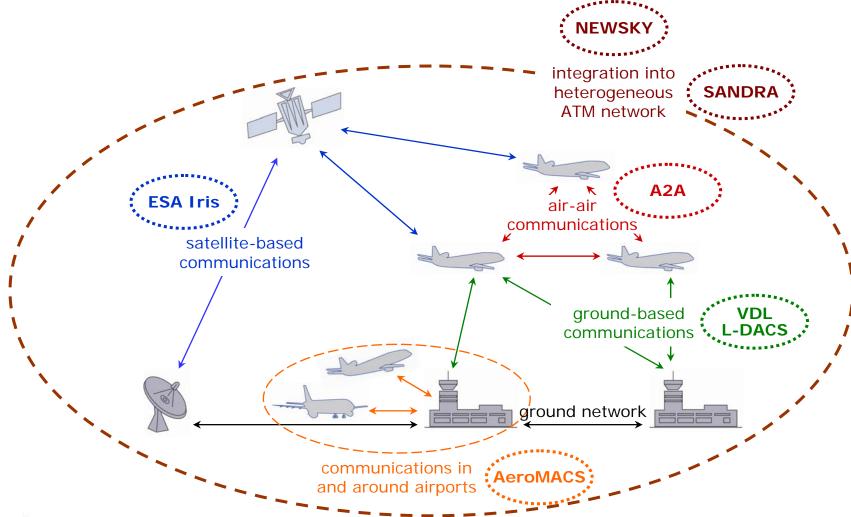
- Current data link developments
 - Aeronautical Mobile Airport Commun. System AeroMACS
 - ◆ Airport data link based on WiMAX (IEEE 802.16e)
 - ♦ Very high data-rate, broadband data link (5/10 MHz)
 - Mobile (aircraft) and portable (sensors) applications
 - L-Band Digital Aeronautical Commun. System L-DACS
 - ◆ L-DACS1: Broadband FDD system based on OFDM multi-carrier technology like WiFi, WiMAX, and LTE
 - ◆ L-DACS2: Narrowband TDD single-carrier system
 - Decision after prototyping and compatibility measurements, both performed within SESAR Joint Undertaking

DLR L-DACS1 Prototype

- Current data link developments
 - Satellite-based ATM communications system ESA Iris Project
 - Dedicated European satellite system for ATM for oceanic and remote areas and as supplement for continental airspace
 - Envisaged final deployment: around 2020
 - Phase 1 (finalized): System definition
 - Phase 2 (running): System development, including standardization and validation
 - ◆ Phase 3 (planned): In-orbit verification and certification of preoperational system, technical support to full system deployment
 - Direct air-to-air communications
 - ◆ Recently started research activity, e.g. by DLR
 - Goal: Air-to-air connectivity beyond ADS-B as provided by SSR Mode S or UAT

NEWSKY: Networking the Sky SANDRA: Seamless Aeronautical Networking through int. of Data links, Radios, and Antennas

- Aeronautical networking "Networking the Sky"
 - Several data links are available or in development:
 VDL Mode 2, HFDL, AeroMACS, L-DACS, SatCom
 - Disparate communication systems are expensive and inefficient
 - DLR vision "Networking the Sky"
 Development of solutions for an aeronautical communication network based on IPv6 for the integration and interoperability of different services and different data links
 - EU project NEWSKY
 initiated and led by DLR proved feasibility
 and developed networking concept
 - ◆ EU project SANDRA
 is aiming as NEWSKY follow-up –
 at demonstrator implementation
 of networking concept



- Aeronautical networking "Networking the Sky"
 - The IPv6 based networking solutions aim at cost savings, high reliability and an optimal alignment with the evolution of communication and security technologies

Future Communication Concepts – Summary

Potential for Risk Mitigation

- Information of aircraft crews about weather effects
 - Using dedicated links ground-based data links (VDL, L-DACS)
 or satellite links in remote areas
 - Using aeronautical communications network
 - Countermeasures are taken, e.g. re-routing of flight route
- Airborne sensor network
 - Each aircraft acts as a sensor for meteorological data
 - Sensor data is centrally collected on ground and processed
 - Global weather map is produced on ground
 - Aircraft in areas with (severe) weather effects are informed
 - Prerequisite: Broadband aeronautical communications network

Potential for Risk Mitigation

- "Online" black-box
 - Black-box essential for avoiding future accidents
 - Sometimes data or black-box itself gets lost during accidents
 - Countermeasure:
 - Continuously transmit black-box data to ground
 - ◆ In case of accident, data is immediately available for inspection
 - Prerequisite: Broadband data link connection
 - Dedicated broadband satellite link
 - Broadband aeronautical communications network

Conclusions

- In the medium-term, an aeronautical communications network is envisaged with potential for risk mitigation
- In the short-term, dedicated satellite links may be used
- Applications for risk mitigation should be defined (asap!)
 - Including requirements on data rate, latency, etc.
 - Important for consideration within future link development
- Technology for broadband communication is available
 - Problem is spectrum resource
 - Aeronautical spectrum is quite large, but inefficiently used
 - Modernization of SURV and NAV systems required
 - Rearrangement between SURV, NAV and COM required

Conclusions

Future communication concepts have the potential for risk mitigation

- Demand and requirements must be clearly stated
 - > Resources (spectrum) must be made available

Questions?

