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ABSTRACT: 
 
Multiresolution and multispectral image fusion (pan-sharpening) requires proper assessment of spectral consistency but also spatial 
consistency. Many fusion methods resulting in perfect spectral consistency may leak spatial consistency and vice versa, therefore a 
proper assessment of both spectral and spatial consistency is required. Up to now, only a few approaches were proposed for spatial 
consistency assessment using edge map comparison, calculated by gradient-like methods (Sobel or Laplace operators). Since image 
fusion may change intensity and contrast of the objects in the fused image, gradient methods may give disagreeing edge maps of the 
fused and reference (panchromatic) image. Unfortunately, this may lead to wrong conclusions on spatial consistency. In this paper 
we propose to use phase congruency for spatial consistency assessment. This measure is invariant to intensity and contrast change 
and allows to assess spatial consistency of fused image in multiscale way. Several assessment tests on IKONOS data allowed to 
compare known assessment measures and the measure based on phase congruency. It is shown that phase congruency measure has 
common trend with other widely used assessment measures and allows to obtain confident assessment of spatial consistency. 
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1. INTRODUCTION 

Pan-sharpened data have many areas of application and 
therefore different requirements are posed on the fusion 
method. The requirements can be on spectral consistency, 
spatial consistency or on the both together. Spectral consistency 
assumes that pansharpened data have increased spatial 
resolution with spectral properties of the original data. Spatial 
consistency assumes that “A high spatial quality merged image 
is that which incorporates the spatial detail features present in 
the panchromatic image and missing in the initial multispectral 
one” (González-Audícana, 2005). Spectral and spatial 
consistency together is the ideal case of the fused data and the 
ideal fusion method is to provide these characteristics. A pan-
sharpening method may provide perfect spectral consistency 
together with poor spatial consistency and vice versa. 
Therefore, to make proper decision on a fusion method (or to 
outline the best one), assessment of both spectral and spatial 
consistency is to be performed. 
 

2. PAN-SHARPENED DATA QUALITY 

2.1 Spectral consistency 

Spectral consistency assessment usually performed using 
Wald's protocol in order to make reference multispectral data of 
high resolution available. There is a variety of developed and 
well-known similarity measures used for spectral consistency 
assessment. The most known and popular are: Spectral Angle 
Mapper, SAM (calculated as the angle between two vectors): 
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K is the number of bands, r and f are the two vectors created by 
the values of spectral channels at the same pixel in the reference 
and fused images A and B; Structural SIMilarity SSIM (Wang, 
2004) or extended SSIM - Q4 (Alparone, 2003), (correlation, 
contrast, and luminance similarity between two images are used 
to calculate one similarity value): 
 

,

22
),(

3

3

2
22

2
22

1


























































C

C

C

CC
BASSIM

ii

ii

ii

ii

ii

i

BA

BA

BA

BA

BA

BiA
ii













 (2) 

 
where

iA and
iB are the local sample means of Ai and Bi, 

respectively,
iA and

iB are the local sample standard 

deviations of Ai and Bi, respectively, and
iiBA  is the sample 

cross correlation of Ai and Bi after removing their means. The 

items C1, C2, and C3 are small positive constants that stabilize 

each term; ERGAS (Wald, 1997) (similarity measure for 
multispectral images, based on MSE estimator): 
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where Ai and Bi are the compared bands of a multispectral 

image, RMSE is root mean squared error, 
iA is the mean value 

of Ai, K is the number of bands, l
h is high/low resolution 

images ratio; Zero mean normalised cross-correlation, ZNCC: 
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where Ai, Bi are the compared images;

iA ,
iB are the averages 

of the images Ai,Bi, respectively; NM ,  is the size of the 

compared images. 
 
2.2 Spatial consistency 

Spatial consistency is another aspect of fused imagery 
assessment. Up to now not many papers deal with spatial 
consistency assessment. Almost all the works use single scale 
edge detector (Gradient, Laplacian, Sobel edge detector) and an 
evaluation metric to calculate the distance between the edge 
maps (usually correlation coefficient) (Shi, 2003; Zhou, 1998; 
Pradhan, 2006). Here the comparison is made between the fused 
bands and the corresponding panchromatic image. Another 
approach calculates the percentage of true and false edges 
introduced into the fused band using Sobel edge detector 
(Pradhan, 2006). Several works on fusion report use of SSIM 
and ERGAS measures for spatial consistency assessment (Lillo-
Saavedra, 2005) (panchromatic image is used as the reference 
instead of a spectral band). 
 
In this paper we propose to use an additional measure for spatial 
consistency assessment. This measure uses phase congruency 
(PC) (Kovesi, 1999) for feature extraction on an image. 
Invariance to intensity and contrast change as well as multiscale 
nature of this measure allows to obtain more confident 
assessment comparing to single-scale edge detectors. 
 

3. PHASE CONGRUENCY FOR SPATIAL 
CONSISTENCY ASSESSMENT 

3.1 Phase congruency 

Phase congruency was proposed as intensity and contrast 
invariant dimensionless measure of feature significance, and 
used for signal matching and feature extraction (Kovesi, 1999). 
Phase congruency at point x may be defined in the following 
way: 
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where soFA is the amplitude of the component in Fourier series 

expansion, so is the phase deviation function, oW is the PC 

weighting function, o is the index over orientation, s is the index 
over scale, oT is the noise compensation term,  is the term 

added to prevent division by zero,    means that the enclosed 

quantity is permitted to be non-negative (Kovesi, 1999). 

 
A bank of 2D Log Gabor wavelets is used for feature 
extraction. Different scale and orientation of the wavelets in the 
bank allow extracting more information about the structure 
(detail) of the image under assessment. 
 
Multiscale image analysis instead of single-scale gradient 
operators allows to extract more information on image 
structure, features and edges. The result of PC extraction is 
phase congruency feature map. This map represents the 
structure of the image and allows to perform feature based 
image comparison. 
 
3.2 Comparison metric 

Zero mean normalized cross correlation was selected as a 
comparison metric of PC feature maps. Liu et. al. report on 
successful application of the metric for this task (Liu, 2008). 
ZNCC produces a real value in the range [-1,1] where 1 
indicates full similarity of compared maps and -1 indicates 
absolute dissimilarity.  
 
Pan-sharpened spectral band and corresponding panchromatic 
image are used for extraction of PC feature maps, and the maps 
are compared using ZNCC. The panchromatic image is used as 
the reference image for spatial consistency assessment (Figure 
1). 
 
3.3 Assessment protocol 

The benefit of PC application for assessment may be illustrated 
by comparison with other assessment methods on pan-
sharpened dataset, which consists of fused images with known 
quality. PC is expected to show similar trend with other 
assessment measures and provide similar assessment results. 
Well-known fusion methods should be used in order to produce 
the dataset with expected quality. 
 
Several well-known pan-sharpening methods were selected to 
produce fused images with expected quality (spatial and 
spectral consistency): Intensity-Hue-Saturation (IHS) image 
fusion (Welch, 1987), image fusion using Principal Component 
Analysis (PCA) (Welch, 1987), wavelet image fusion (Aiazzi, 
2002), and General Image Fusion method (GIF) (Wang, 2005). 
Generally, well-known methods IHS and PCA produce fusion 
results with proper spatial consistency; wavelet fusion produces 
proper spectral consistency; GIF method produces a 
compromise of acceptable spectral and spatial consistency. 
Fusion methods can be sorted according to the quality of the 
produced result: in the sense of spectral or in the sense of 
spatial consistency. These methods were chosen as reference 
methods to produce expected results for pan-sharpened dataset 
used for assessment and comparison. 
 
During the first assessment setup, a set of multispectral images 
was pan-sharpened by the following methods: IHS, PCA, À 
trous wavelet image fusion (ATWT, cubic B-spline), and by 
two modifications of General Image Fusion method (GIF-1 and 
GIF-2). GIF-1 extracts high-resolution image detail (high 
frequency component) from panchromatic image and adds to 
interpolated spectral image. The amount of transferred image 
detail data is established using regression (Starovoitov, 2007). 
GIF-2 employs image detail addition to interpolated spectral 
image (Ehlers, 2004). IHS and PCA image fusion methods were 
run using ENVI software, while all the other fusion methods 
were implemented using IDL system. 



 

 
Figure 1. Diagram of spatial consistency assessment using 

phase congruency 
 
During the second assessment setup, the same images were 
pansharpened by GIF-2 method with different parameters. GIF-
2 has a parameter hf, which varies in the range [0, 1] and 
controls proportionality (0%-100%) of high-frequency image 
data to be added to low-resolution spectral image. The high-
frequency information is extracted using Butterworth filtering. 
The higher the value, the wider the Butterworth filter width and 
the more high frequency data is added. Variation of this 
parameter allows to create fused images with desired quality: 
the more high-frequency data is added, the higher spatial and 
lower spectral consistency, and vice versa. Three different 
values were taken for the parameter (0.9, 0.75, and 0.5, i.e. 
90%, 75%, and 50%, respectively) and three fused images were 
produced. These created images are used for estimation of the 
trend between the measures and phase congruency spatial 
consistency assessment. 
 
High resolution IKONOS multispectral images were used for 
fusion and assessment. The images were acquired in the areas 
of Athens (27 July 2004, 08:46 GMT) and Munich (15 July 
2005, 10:28 GMT) cities. Full spectral image data (four spectral 
bands: blue colour range, green colour range, red colour range, 
NIR range) was used for pan-sharpening and assessment 
experiments. Sub scenes (panchromatic image size is 
4000x4000) were used in the experiments. 
 
In the first and second setups the pan-sharpened images were 
assessed for spectral and spatial consistency using standard 
widely used assessment measures. Wald's protocol was used for 
spectral consistency assessment (SSIM, ERGAS, and SAM 

measures). Spatial consistency was assessed using Zero mean 
normalised cross-correlation coefficient (CORR), High Pass 
Correlation Coefficient (HPCC) (Zhou, 1998), SSIM, ERGAS, 
and using Phase Congruency (Zero mean normalized cross-
correlation metric) (PC ZNCC). The assessment functions were 
implemented in IDL, while the original Matlab code was used 
for calculation of Phase Congruency (www.csse.uwa.edu.au/ 
~pk/Research/MatlabFns/). 
 
One example of quantitative assessment of IKONOS urban 
subscene (Athens, panchromatic image size is 4000x4000) is 
presented in Table 1: spectral consistency (SSIM, ERGAS, 
SAM) and spatial consistency assessment (SSIM PAN, ERGAS 
PAN, CORR PAN, HPCC, PC ZNCC). The SSIM PAN, 
ERGAS PAN, CORR PAN are the measures notation for spatial 
consistency assessment (fused image is compared with 
corresponding panchromatic image). Mean values of the 
measures are calculated over the assessed spectral channels. 
 
The results of quantitative assessment during the second 
assessment setup are presented in Table 2. The dependencies of 
the measures on the quality of the fused images are presented in 
Figures 2 and 3. The characteristics of the resulting images are 
dependent on the GIF-2 hf parameter. Assessment of the pan-
sharpened images with different quality (GIF-2 method, 
parameter variation) results in different scores and allows to 
illustrate trends of the measures. 
 

4. RESULTS AND DISCUSSION 

One of important questions during this investigation was: does 
the assessment using PC has the same trend with the other 
measures? The results produced by assessment measures were 
analysed for similarity in trend. 
 
The PC ZNCC and SSIM PAN, ERGAS PAN, CORR PAN, 
HPCC illustrate higher spatial consistency produced by the 
IHS, PCA, GIF-1 and GIF-2 methods. This agrees with the 
well-known fact that the IHS, PCA and GIF methods produce 
the best spatially-consistent results with some loss of spectral 
consistency. Here the PC ZNCC illustrates similar results 
comparing with other measures on spatial consistency (Table 
1). For the ATWT fusion, the PC ZNCC and SSIM PAN, 
ERGAS PAN, CORR, HPCC illustrate loss of spatial 
consistency and the highest spectral consistency (SSIM and 
ERGAS). PC-based metric resulted in the lowest value on 
spatial consistency, which correlates with the knowledge about 
the fusion result. GIF-1 and GIF-2 methods provided a 
compromise between the spectral (SSIM, SAM) and spatial 
consistency (PC ZNCC and SSIM PAN, ERGAS PAN, HPCC, 
together). 
 
Highest score of SAM for GIF-2 method (Table 1) was caused 
by characteristics of the General Image Fusion (GIF) method, 
which provides a good compromise between the spatial and 
spectral consistency.  For this particular case, the GIF method 
resulted in good spectral consistency (according to SAM 
measure) with acceptable spatial consistency. 
 
Table 1 illustrates better values of ERGAS PAN for ATWT 
(3.78) than for IHS (11.17). The opposite trend is shown by the 
PC ZNCC and CORR PAN, HPCC. Such results may originate 
from instability of the MSE estimator (Wang, 2009) in ERGAS 
measure. Also SSIM PAN illustrated low spatial consistency of 
the IHS fusion (SSIM PAN (mean) equals to 0.6314). This 
disagreement may be caused by the nature of SSIM measure, 



 

which uses comparison of luminance and contrast of the 
images. For this example, PC ZNCC assessment is not skewed 
and coincides with results of HPCC and Correlation. 
 
The second assessment setup is expected to illustrate increase of 
spectral consistency with simultaneous decrease of spatial 
consistency on the fusion results (GIF-2 method, change of 
parameter set). Dependency graphs of the assessment measures 
are presented in Figure 2 (spectral consistency: SSIM mean, 
ERGAS mean, SAM) and in Figure 3 (spatial consistency: 
SSIM PAN (mean), ERGAS PAN, CORR PAN (mean), HPCC 
(mean), PC ZNCC (mean)). Since the ideal values for SSIM, 
ERGAS, and SAM are (respectively) 1, 0, and 0, the spectral 
consistency measures are increasing (Figure 2). This 
corresponds to our assumption and expectation. For the spatial 
consistency assessment, the ideal values for SSIM PAN, 
ERGAS PAN, CORR PAN, HPCC, PC ZNCC are 
(respectively) 1, 0, 1, 1, and 1, the spatial consistency measures 
are decreasing (Figure 3). This also corresponds to our 
assumption and expectation for spatial consistency. Figure 3 
clearly illustrates similar trend of the PC ZNCC with all the 
other spatial consistency measures. 
 
Table 2 illustrates common trend on spatial consistency 
between the results obtained by known measures and the PC-
based metric. Spatial consistency assessment using PC 
illustrates expected decrease of spatial consistency. Also, the 
PC ZNCC measure is more sensitive to change of spatial 
consistency, so it is easier to assess and compare the quality of 
the image. 
 
Visual assessment shows that the best spatial consistency have 
the IHS, PCA, GIF-1, and GIF-2 methods while ATWT resulted 
in slightly blurred edges (Figure 4), and coincides with the 
results of numerical assessment using PC. Figure 5 presents 
corresponding fragments of panchromatic and fused image (IHS 
fusion), edge maps (Sobel operator), and maximum moment of 
PC covariance (indicator of edge strength). It should be noted 
that PC feature map should not be confused with edge map. 
Figure 5 illustrates difference of image intensity and contrast 
(subfigures a), b)). Different edge maps are produced by edge 
detection operators (subfigures c, d). It is also demonstrated that 
the PC is more stable to intensity and contrast change 
(subfigures e, f). 
 

5. CONCLUSIONS 

Not many papers report on spatial consistency assessment of 
pan-sharpened data. Therefore, a need for robust and sufficient 
measures still exists. Application of phase congruency for 
spatial consistency assessment is proposed. Multiscale nature of 
phase congruency as well as invariance to intensity and contrast 
change allows more thorough analysis of fused data, comparing 
to single-scale edge detection methods. Identical trend with 
different assessment measures and with visual assessment 
showed that phase congruency is relevant for spatial 
consistency assessment, and the decision on the consistency can 
be made with higher confidence. Also it was found that ERGAS 
and SSIM provided less stability for spatial consistency 
assessment than correlation and edge-based measures. It should 
be noted that sometimes use of single assessment measure is not 
sufficient and may give skewed results (not all the 
characteristics of the fused data are revealed). Therefore use of 
several assessment measures increases confidence over 
calculated results. 
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 Spectral consistency Spatial consistency 

 Fusion 
Method 

SSIM, 
ideal=1 

SSIM 
(mean) 

ERGAS, 
ideal=0 

SAM, 
ideal=0 

SSIM 
PAN, 
ideal=1 

SSIM 
PAN 
(mean) 

ERGAS 
PAN, 
ideal=0 

CORR 
PAN, 
ideal=1 

CORR 
PAN 
(mean) 

HPCC, 
ideal=1 

HPCC 
(mean) 

PC 
ZNCC, 
ideal=1 

PC ZNCC
(mean) 

1 ATWT 0.9527 
0.8940 
0.8604 
0.8459 

0.8883 1.2804 1.0164 0.6339 
0.7474 
0.8018 
0.8122 

0.7488 3.7802 0.7939 
0.8467 
0.8625 
0.8615 

0.8412 0.7604 
0.7679 
0.7685 
0.7991 

0.77 0.7675 
0.7789 
0.7738 
0.8084 

0.7821 

2 IHS 0.1737 
0.2042 
0.2767 

0.2182 13.0793 5.2042 0.6184 
0.5890 
0.6870 

0.6314 11.1713 0.9890 
0.9930 
0.9876 

0.9898 0.9864 
0.9882 
0.9860 

0.99 0.9566 
0.9630 
0.9571 

0.9589 

3 PCA 0.8036 
0.6736 
0.6311 
0.7103 

0.7047 2.4393 1.5413 0.8379 
0.9623 
0.9879 
0.9346 

0.9307 3.0968 0.9276 
0.9762 
0.9825 
0.8870 

0.9433 0.9914 
0.9971 
0.9979 
0.9912 

0.9944 0.9430 
0.9630 
0.9651 
0.9162 

0.9468 

4 GIF-1 0.7462 
0.6079 
0.5693 
0.6386 

0.6405 2.9900 1.1484 0.9040 
0.9705 
0.9516 
0.9567 

0.9457 3.0098 0.9349 
0.9665 
0.9725 
0.9443 

0.9545 0.9929 
0.9941 
0.9941 
0.9918 

0.99 0.9444 
0.9507 
0.9499 
0.9341 

0.9447 

5 GIF-2 
(90%) 

0.7057 
0.6666 
0.7293 
0.7288 

0.7076 2.3506 0.7142 0.8947 
0.9628 
0.9551 
0.9308 

0.9359 3.1691 0.8960 
0.9571 
0.9520 
0.8978 

0.9257 0.9846 
0.9928 
0.9912 
0.9854 

0.9885 0.9157 
0.9494 
0.9233 
0.8980 

0.9216 

 

Table 1. Spectral and spatial consistency assessment of the pan-sharpened image dataset (first assessment setup) 
 
 Spectral consistency Spatial consistency 

 Fusion 
Method 

SSIM, 
ideal=1 

SSIM 
(mean) 

ERGAS, 
ideal=0 

SAM, 
ideal=0 

SSIM 
PAN, 
ideal=1 

SSIM 
PAN 
(mean) 

ERGAS 
PAN, 
ideal=0 

CORR 
PAN, 
ideal=1 

CORR 
PAN 
(mean) 

HPCC, 
ideal=1 

HPCC 
(mean) 

PC 
ZNCC, 
ideal=1 

PC ZNCC
(mean) 

1 GIF-2 
(90%) 

0.7057 
0.6666 
0.7293 
0.7288 

0.7076 2.3506 0.7142 0.8947 
0.9628 
0.9551 
0.9308 

0.9359 3.1691 0.8960 
0.9571 
0.9520 
0.8978 

0.9257 0.9846 
0.9928 
0.9912 
0.9854 

0.9885 0.9157 
0.9494 
0.9233 
0.8980 

0.9216 

2 GIF-2 
(75%) 

0.7333 
0.7011 
0.7594 
0.7529 

0.7366 2.0316 0.7002 0.8591 
0.9335 
0.9300 
0.9139 

0.9091 3.2778 0.8827 
0.9389 
0.9350 
0.8980 

0.9136 0.9816 
0.9874 
0.9852 
0.9808 

0.9837 0.8116 
0.8654 
0.8097 
0.7658 

0.8131 

3 GIF-2 
(50%) 

0.8205    
0.8053 
0.8462    
0.8391 

0.8277 1.4732 0.6344 0.7706 
0.8412 
0.8408 
0.8302 

0.8207 3.5938 0.8521 
0.8952 
0.8923 
0.8638 

0.8758 0.9412 
0.9464 
0.9431 
0.9379 

0.9421 0.7024 
0.6968 
0.6368 
0.6114 

0.6618 

 

Table 2. Spectral and spatial consistency assessment of GIF-2 pan-sharpened image dataset (second assessment setup) 
 

 

 
Figure 2. Dependency of spectral consistency measures on 

added high frequency in GIF-2 method (Table 2) 

 

 
Figure 3. Dependency of spatial consistency measures on 

added high frequency in GIF-2 method (Table 2)



 

 

 
a) b) 

 
c) d) 

 
e) f) 

 

 

g)  
Figure 4. Example of a region taken from a fused urban scene

(IKONOS, Athens, region size is 316x316). a)
panchromatic image, b) interpolated multispectral
(bilinear), c) ATWT , d) IHS, e) PCA, f) GIF-1, g) 
GIF-2. Fused images are composed of visible range
spectral channels. ATWT fusion illustrates some
loss of spatial consistency 

 
 
 
 
 
 
 
 
 
 
 

 
a) b) 

 
c) d) 

 
e) f) 

Figure 5. Region of the scene (München), edge and PC feature 
maps: a) Panchromatic image, b) IHS fusion (Band 
3, red colour spectral range), c), d) Sobel edge map 
on panchromatic image and on IHS fusion, e), f) 
maximum moment of phase congruency covariance 
on  panchromatic image and on IHS fusion 

 


