elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Kontakt | English
Schriftgröße: [-] Text [+]

Enhanced Automated Canopy Characterization from Hyperspectral Data by a Novel Two Step Radiative Transfer Model Inversion Approach

Dorigo, Wouter A. und Richter, Rudolf und Baret, Frederic und Bamler, Richard und Wagner, Wolfgang (2009) Enhanced Automated Canopy Characterization from Hyperspectral Data by a Novel Two Step Radiative Transfer Model Inversion Approach. Remote Sensing, 1, Seiten 1139-1170. DOI: 10.3390/rs1041139. ISSN 2072-4292.

Dieses Archiv kann nicht den gesamten Text zur Verfügung stellen.

Offizielle URL: http://www.mdpi.com/journal/remotesensing

Kurzfassung

Automated, image based methods for the retrieval of vegetation biophysical and biochemical variables are often hampered by the lack of a priori knowledge about land cover and phenology, which makes the retrieval a highly underdetermined problem. This study addresses this problem by presenting a novel approach, called CRASh, for the concurrent retrieval of leaf area index, leaf chlorophyll content, leaf water content and leaf dry matter content from high resolution solar reflective earth observation data. CRASh, which is based on the inversion of the combined PROSPECT+SAILh radiative transfer model (RTM), explores the benefits of combining semi-empirical and physically based approaches. The approach exploits novel ways to address the underdetermined problem in the context of an automated retrieval from mono-temporal high resolution data. To regularize the inverse problem in the variable domain, RTM inversion is coupled with an OPEN ACCESS Remote Sens. 2009, 1 1140 automated land cover classification. Model inversion is based on a two step lookup table (LUT) approach: First, a range of possible solutions is selected from a previously calculated LUT based on the analogy between measured and simulated reflectance. The final solution is determined from this subset by minimizing the difference between the variables used to simulate the spectra contained in the reduced LUT and a first guess of the solution. This first guess of the variables is derived from predictive semi-empirical relationships between classical vegetation indices and the single variables. Additional spectral regularization is obtained by the use of hyperspectral data. Results show that estimates obtained with CRASh are significantly more accurate than those obtained with a tested conventional RTM inversion and semi-empirical approach. Accuracies obtained in this study are comparable to the results obtained by various authors for better constrained inversions that assume more a priori information. The completely automated and image-based nature of the approach facilitates its use in operational chains for upcoming high resolution airborne and spaceborne imaging spectrometers.

Dokumentart:Zeitschriftenbeitrag
Titel:Enhanced Automated Canopy Characterization from Hyperspectral Data by a Novel Two Step Radiative Transfer Model Inversion Approach
Autoren:
AutorenInstitution oder E-Mail-Adresse der Autoren
Dorigo, Wouter A.wd@ipf.tuwien.ac.at
Richter, Rudolfrudolf.richter@dlr.de
Baret, FredericInstitut National de la Recherche Agronomique, Avignon
Bamler, RichardRichard.Bamler@dlr.de
Wagner, WolfgangTU München
Datum:2009
Erschienen in:Remote Sensing
Referierte Publikation:Ja
In Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:1
DOI :10.3390/rs1041139
Seitenbereich:Seiten 1139-1170
ISSN:2072-4292
Status:veröffentlicht
Stichwörter:Hyperspectral Data, model automation; grassland; meadow; imaging spectroscopy; precision agriculture; SPECL; vegetation index; semi-empirical approach; crops; agriculture
HGF - Forschungsbereich:Verkehr und Weltraum (alt)
HGF - Programm:Weltraum (alt)
HGF - Programmthema:W - keine Zuordnung
DLR - Schwerpunkt:Weltraum
DLR - Forschungsgebiet:W - keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):W -- keine Zuordnung (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung
Deutsches Fernerkundungsdatenzentrum > Landoberfläche
Hinterlegt von: Cornelia Roehl
Hinterlegt am:01 Feb 2010 14:15
Letzte Änderung:18 Sep 2013 03:03

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Copyright © 2008-2013 Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.