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Abstract: We consider the problem of designing residual generators with least dynamical orders
to solve actuator fault detection and isolation problems for a generic large transport aircraft.
The main result of our analysis is the proof of feasibility of the complete isolation of all primary
actuator/surface faults in the nominal case by using a minimal number of additional surface
angle sensors. The analysis of the nominal case provides residual filter specifications (reference
models) to be employed for robust synthesis of residual generators.
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1. INTRODUCTION

The monitoring of primary actuator failures is of paramount
importance for the safe operation of an aircraft, for a
continuous situation awareness of pilots, and for the ap-
plicability of fault tolerant control (FTC) techniques to
accommodate with various failure modes. The fault de-
tection and isolation (FDI) of primary actuator failures
which are relevant for the application of FTC techniques
is illustrated in this paper for a generic transport aircraft
with a full set of control surfaces/actuators.

The main goals of our analysis are: 1) Proving the feasibil-
ity of the FDI of all primary actuator faults; 2) Illustrat-
ing the potential of different approaches; 3) Determining
achievable specifications for robust design; 4) Demonstrat-
ing the capabilities of recently developed design tools to
solve complex monitoring problems. In what follows we
provide some details on these goals and their achievement.

1) Several fault scenarios are of interest for actuator fail-
ures. The ability to detect single actuator faults is of major
importance, being part of the aircraft control system cer-
tification requirements. Accordingly, a minimum require-
ment for a modern aircraft control system is that no single
failure must lead to a catastrophic consequence. Simulta-
neous faults can also occur, especially in conjunction with
surface damages. Their detection and isolation requires
a more involved residual generation system and also the
availability of a sufficiently large number of measurements.
One of the main results of our study was to demonstrate
the feasibility of FDI for a complete set of faults in a
nominal case corresponding to a normal cruise flight.

2) The monitoring and diagnosis of actuator faults can
be done at both component as well as at system level.
The component level monitoring is traditionally used on
present day aircraft and relies on the availability of surface
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angle sensors. Its capabilities to detect and even identify
various fault types (e.g., loss of effectiveness, stuck or
runaway faults, floating surface faults) have been discussed
in (Varga, 2007b). However, this scheme has some intrinsic
limitations, as for example, its inability to detect surface
failures involving the loss of effectiveness. Also it does not
work properly in the case of surface sensor failures. There-
fore, monitoring all types of faults requires addressing
the FDI problem (at least partially) using a system level
approach. However, the system level approach has its own
limitations due to the restricted number of available mea-
surements, and therefore a full FDI is not possible unless
additional surface sensors are used. An important result of
our analysis is to show that the best FDI performance in
terms of isolation capabilities and on-line implementation
efforts are obtained when combining component level and
system level fault monitoring techniques.

3) The results obtained for the nominal case consist of
several residual generators and the corresponding fault-to-
residual dynamics. The latter represent meaningful speci-
fications for a more realistic design where the robustness
aspects against parametric and operational point uncer-
tainties as well as with respect to disturbances (e.g., wind
gusts) are addressed. For this purpose, both optimal struc-
tured residual synthesis techniques (Varga, 2009a) as well
as optimal model-matching techniques (Varga, 2005) are
envisaged to be employed in a future study.

4) The employed computational tools represent enhance-
ments of tools available in the Fault Detection Toolbox
for Matlab developed by the author (Varga, 2006), while
the underlying algorithms are refined synthesis methods
of least order residual generators (Varga, 2007a). It is
worth mentioning, that due to the relatively large order
of the underlying system, the reliable synthesis of low
order residual generators was only possible by employing
highly sophisticated computational techniques, like ratio-
nal nullspace computations based on Kronecker-like forms
or minimum dynamic covers based order reduction.
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2. FAULT DETECTION AND ISOLATION PROBLEM

Consider additive fault models described by input-output
representations of the form

y(s) = Gu(s)u(s) + Gd(s)d(s) + Gf (s)f(s), (1)

where y(s), u(s), d(s), and f(s) are Laplace-transformed
vectors of the the p-dimensional system output vector y(t),
mu-dimensional control input vector u(t), md-dimensional
disturbance vector d(t), and mf -dimensional fault vector
f(t), respectively, and where Gu(s), Gd(s) and Gf (s) are
the transfer-function matrices (TFMs) from the control
inputs to outputs, disturbance inputs to outputs, and fault
inputs to outputs, respectively. In a deterministic setting
the disturbances are considered as unknown signals, while
in a stochastic setting the disturbances are considered to
be stochastic signals (e.g., white noise).

A linear residual generator (or fault detection filter) pro-
cesses the measurable system outputs y(t) and control
inputs u(t) and generates the residual signals r(t) which
serve for decision making on the presence or absence of
faults. The input-output form of this filter is

r(s) = R(s)

[

y(s)
u(s)

]

(2)

where R(s) is the TFM of the filter. For a physically
realizable filter, R(s) must be proper (i.e., only with finite
poles) and stable (i.e., only with poles having negative real
parts). The McMillan degree (or dynamic order) of R(s) is
the dimension of the state vector of a minimal state-space
realization of R(s). The dimension q of the residual vector
r(t) depends on the fault detection problem to be solved.
For example, for the detection of faults a single residual
could be sufficient, but for isolating a fault among several
possible faults a set of residuals grouped into a vector is
needed.

The residual signal r(t) in (2) generally depends via the
system outputs y(t) of all system inputs u(t), d(t) and f(t).
The residual generation system, obtained by replacing in
(2) y(s) by its expression from (1), is given by

r(s) = Rf (s)f(s) + Rd(s)d(s) + Ru(s)u(s) (3)

where the involved TFMs are defined as

[ Rf (s)|Rd(s)|Ru(s) ] := R(s)

[

Gf (s) Gd(s) Gu(s)
0 0 Imu

]

For a successfully designed filter R(s), the correspond-
ing residual generation system is proper and stable and
achieves specific fault detection requirements.

For a given detector with a q×(p+mu) TFM R(s), denote
by Ri

fj
(s) the (i, j)-th entry of the corresponding Rf (s).

We can define a q ×mf structure matrix S corresponding
to a residual set as follows:

Sij = 1 if Ri
fj

(0) 6= 0

Sij = −1 if Ri
fj

(0) = 0 and Ri
fj

(s) 6= 0

Sij = 0 if Ri
fj

(s) = 0

If Sij = 1 then we say that the fault j is strongly detected
in residual i. If Sij = −1 then the fault j is only weekly
detected in residual i. The fault j is not detected in
residual i if Sij = 0. We refer to the i-th row of S as the i-th
specification, while the j-th column of S as the signature
(or code) of fault fj . This and related nomenclature used
later is borrowed from (Gertler, 1998).

The following fault detection and isolation problem (FDIP)
can be now formulated: Given a q × mf structure matrix
S determine a bank of q stable and proper scalar output
residual generator filters

ri(s) = Ri(s)

[

y(s)
u(s)

]

, i = 1, . . . , q (4)

such that, for all u(t) and d(t) we have:

(i) ri(t) = 0 when fj(t) = 0, ∀ j with Sij 6= 0;
(ii) ri(t) 6= 0 when fj(t) 6= 0, ∀ j with Sij 6= 0.

In this formulation of the FDIP, each scalar output detec-
tor Ri(s) achieves the i-th specification of the structure
matrix S. The simplest case is to solve the fault detection
problem (FDP), for S = [ 1 1 · · · 1 ], using a scalar output
detector. On the opposite side, to achieve the complete
isolation of maximum k simultaneous faults the choice
S = Ik is necessary. In many practical applications this
strong isolation requirement can not be achieved due to
the lack of sufficient number of measurements. If we can
enforce a structure matrix with distinct fault signatures,
then a so-called week isolation of faults is possible. For
example, if for 3 fault inputs the structure matrix

S =

[

0 1 1
1 0 1
1 1 0

]

can be achieved, then the occurrence of a single fault fj can
be detected if all residuals (excepting the j-th residual) are
non-zero. More insight on how to specify fault signatures
can be found in (Gertler, 1998, 2000).

Let Gfj
(s) denote the j-th column of Gf (s) and let S

be a given q × mf structure matrix. We denote by G
i

f (s)
the matrix formed from the columns of Gf (s) whose
column indices j correspond to zero elements in the i-th
specification. The solvability conditions of the FDIP are
given by the following theorem (Gertler, 1998, p. 318):

Theorem 1. For the system (1) the FDIP with the given
fault influence matrix S is solvable if and only if for each
i = 1, . . . , q, we have

rank [ Gd(s) G
i

f (s) Gfj
(s) ] > rank [ Gd(s) G

i

f (s) ] (5)

for all j such that Sij 6= 0.

The standard approach to determine R(s) is to design for
each specification i, a detector Ri(s) which generates the
i-th residual signal ri(t), and thus represents the i-th row
of R(s). For this purpose, the nullspace method to design
least order scalar output fault detection filters of (Varga,
2007a,b) can be applied. For each specification i, we rede-
fine (temporarily) the fault components fj corresponding
to Sij = 0 as disturbances and solve the FDP for the rest
of faults whose indices j correspond to Sij 6= 0. In this way,
we obtain a scalar output detector Ri(s) which represents
the i-th row of R(s). The resulting global detector can be
assembled as

R(s) =







R1(s)
...

Rq(s)






(6)

We can also solve the FDIP in a stochastic setting, by
considering the disturbances as white noise, with unit
covariance. In this case, for each row Rj(s) of the detector
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R(s), we impose additionally the condition that in the
absence of faults, the corresponding residual signal rj(t)

is a white noise with unit covariance. If we denote Rj
d(s)

the j-th row of Rd(s), then this condition amounts to ask

that Rj
d(s) is a co-inner function (i.e., Rj

d(s)(R
j
d(−s))T =

1). Using the approach proposed by Nikoukhah (1994),
we can update each row of R(s), by replacing Rj(s) by

(Gj
o(s))

−1Rj(s), where Gj
o(s)G

j
i (s) = Rj

d(s) is an outer-

coinner factorization of Rj
d(s). The inverse (Gj

o(s))
−1 of

the stable and minimum-phase outer factor Gj
o(s) is called

a whitening filter.

The computational methods for the synthesis of residual
generators rely on state space algorithms proposed in
(Varga, 2007a), where the main computational ingredients
are the computation of proper rational nullspace bases
(Varga, 2003a, 2008a), order reduction by employing min-
imal dynamic covers based techniques (Varga, 2003b), and
stable rational factorizations (Varga, 1998). For all these
computations robust numerical software is available in the
Descriptor Systems Toolbox Varga (2000). This soft-
ware served as basis to implement a first version of a Fault

Detection Toolbox Varga (2006), where several tools
are available to solve the main classes of fault detection
problems. The most recent version of this toolbox is fully
documented in Varga (2008b). A recent addition is a new
function to compute the achievable structure matrix S for
a given system (1) based on a recently developed efficient
and reliable numerical algorithm (Varga, 2009b).

3. AIRCRAFT STATE SPACE MODEL WITH
ADDITIVE FAULTS

We consider a nominal linearized aircraft model with
additive faults of the form

ẋ(t) = Ax(t) + Buu(t) + Bdd(t) + Bff(t)
y(t) = Cx(t) + Duu(t) + Ddd(t) + Dff(t)

(7)

where x(t) is the n-dimensional system state vector. The
significance of independent variables is described in Ap-
pendix A and the numerical values of system matrices are
given in (Varga, 2008c). The dimensions of vectors x(t),
y(t), u(t), d(t) and f(t), are respectively, n = 10, p = 10,
mu = 22, md = 3, and mf = 8. The corresponding TFMs
of the model in (1) are

Gu(s) = C(sI − A)−1Bu + Du

Gd(s) = C(sI − A)−1Bd + Dd

Gf (s) = C(sI − A)−1Bf + Df

The actuator and engine models are first order systems
with the following transfer functions: 10/(s + 10) for each
of two elevators, 0.5/(s+0.5) for the stabilizer, 6.6/(s+6.6)
for each of four ailerons and ruder, 5/(s+5) for each of 12
spoilers and 0.66/(s + 0.66) for each of two engines. The
actuators system corresponds to a 22 × 22 block-diagonal
TFM which has a state space realization of the form

ẋa(t) = Aaxa(t) + Bauc(t)
u(t) = Caxa(t) + Dauc(t)

where xa(t) is the state vector of dimension 22 and uc(t)
contains the 20 deflection demands and the 2 thrust de-

mands. The complete aircraft model resulted by coupling
the actuators model at the system input is
[

ẋ(t)
ẋa(t)

]

=

[

A BuCa

0 Aa

] [

x(t)
xa(t)

]

+

[

BuDa

Ba

]

uc(t)

+

[

Bd

0

]

d(t) +

[

Bf

0

]

f(t)

[

y(t)
Πu(t)

]

=

[

C DuCa

0 ΠCa

][

x(t)
xa(t)

]

+

[

DuDa

ΠDa

]

uc(t)

+

[

Dd

0

]

d(t) +

[

Df

0

]

f(t)

(8)

where Π is an input selection matrix. This model has a
state vector of dimension 32, 22 control inputs, and the
number of measured variables can range between 10 and
18 (when all control surfaces corresponding to monitored
actuators are provided with angle sensors). By suitably
choosing Π, this model allows to study the case of an
aircraft without angle sensors (Π is an 0 × 22 empty
matrix), or with an arbitrary set of angle sensors (Π is
formed from up to 8 rows of the identity matrix I22).

4. SOLUTION OF FDIP - DETERMINISTIC CASE

For the design of a fault monitoring system, we consid-
ered two cases. In the first case we assumed that no
surface angle sensors are employed and we determined the
best achievable signature structure which ensures a week
isolation of single faults. In the second case, we add a
minimal number of sensors which allows a better isolation
of simultaneous faults.

To compute the achievable structure matrix S for the air-
craft model, we need to assess the weak/strong detectabil-
ity of combinations of faults. For this purpose, for suitably
chosen detectors Ri(s), we set Sij = −1 if |Ri

fj
(0)| ≤ 0.01

and Ri
fj

(s) 6= 0. In the case, when no surface angle sensors

are used, the achievable structure matrix computed with
the algorithm of Varga (2009b) is the 55× 8 matrix

S =

















































































1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1

0 0 0 0 0 0 0 1

0 0 1 1 1 1 1 0

0 −1 0 −1 1 1 1 1

0 −1 0 −1 1 1 1 0

0 −1 −1 0 1 1 1 1

...

1 1 1 0 1 1 1 0

1 1 1 1 0 1 1 1

1 1 1 1 0 0 0 1

1 1 1 1 0 0 0 0

1 1 1 1 0 1 1 0

1 1 1 1 1 0 1 1

1 1 1 1 1 0 1 0

1 1 1 1 1 1 0 1

1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 0
















































































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where, as it can be observed, there are many lines contain-
ing negative entries corresponding to week detectability of
the faults. There are 47 strongly detectable specifications
which can be used as basis for selecting an optimal desired
set of specifications for the sensor free case.

For example, the signature structure

S1 = [ 1 1 1 1 1 1 1 1 ]

can be used to perform fault detection at system level
(e.g., to complement an already existing component level
monitoring). The resulting detector has order 5 and the
step responses from the faults can be seen in Fig. 1.
Thus, strong fault detection can be achieved without any
additional surface angle sensor information.
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Fig. 1. Step responses from the faults

It is possible to achieve the isolation of all single faults
using the following specification

S2 =



















0 1 1 1 1 0 1 0

1 0 1 1 0 1 1 0

1 1 0 1 1 0 1 0

1 1 1 0 0 1 1 0

1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 1



















which ensures the strong isolation of ruder faults (inde-
pendently of other faults) and the weak isolation of the
rest of faults occurring one at a time. The resulting bank
of 6 detectors has a global order 32, where the six scalar
output detectors have the orders: {6, 6, 6, 6, 4, 4}. In Fig. 2
we present the step response of the fault detection system,
from which the achieved fault signature can be easily
checked.

By employing angle sensors on the two outer ailerons and
on the stabilizer, a better isolation of simultaneous faults
can be achieved using the specification
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Fig. 2. Step responses from the faults

S3 =





























1 0 0 0 0 0 0 0

0 0 1 0 1 1 0 0

0 1 0 0 1 1 0 0

0 0 0 1 0 0 0 0

0 1 1 0 0 1 0 0

0 1 1 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1





























This provides strong fault isolation for the outer ailerons,
stabilizer and ruder (the faults can be isolated if they
occur simultaneously or not with other faults) and weak
fault isolation for left/right inner ailerons and left/right
elevators. The resulting bank of 8 detectors has a global
order 27, where the six scalar output detectors have
the orders: {1, 5, 5, 1, 5, 5, 1, 4}. Note that the first order
detectors correspond to a component level monitoring and
the resulting detectors are the same as when considering
actuator/surface systems alone with first order dynamics.
In Fig. 3 we present the step response of the fault detection
system, from which the achieved fault signature can be
easily checked.

0

0.5

1

From:   f
1

T
o

:  
r 1

10

0

10

T
o

:  
r 2

 10

 5

0

5

T
o

:  
r 3

0

0.5

1

T
o

:  
r 4

 6
 4
 2

0
2
4

T
o

:  
r 5

 10

 5

0

5

T
o

:  
r 6

0

0.5

1

T
o

:  
r 7

0 0.5 1
0

2

4

T
o

:  
r 8

From:   f
2

0 0.5 1

From:   f
3

0 0.5 1

From:   f
4

0 0.5 1

From:   f
5

0 0.5 1

From:   f
6

0 0.5 1

From:   f
7

0 0.5 1

From:   f
8

0 0.5 1

Step Response

Time (sec)

A
m

p
li

tu
d

e

Fig. 3. Step responses from the faults
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Strong isolation of all faults, i.e. the specification S4 = I8,
can be achieved with 7 angle sensors and a detector
of global order 9, or with 8 sensors and a detector of
global order 8. This last case corresponds to employing
only local monitoring and due to the employed least
order synthesis based approach (Varga, 2007a), can be
completely recovered using an unique high order system
model.

5. SOLUTION OF FDIP - STOCHASTIC CASE

It is interesting to compare two cases for the synthesis
of residual generators for fault detection: first, when we
completely ignore the noise inputs in the synthesis of the
residual generator, and second, when we use additionally a
whitening filter. In both cases, the resulting filter has order
4. For the first case, we show in Fig. 4 the time response of
the residual signal to a right outer aileron fault represented
by an unit step at t = 6.6 sec and white noise disturbance
inputs of covariance 0.1.
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Fig. 4. Residual r1 response to a unit step in f1

Contrasting with this, in the second case a strong filtering
effect can be observed in Fig. 5, where the same inputs
are used. This solution is practically the same as that
obtained by using the recently proposed H−/H2 and
H−/H∞ techniques (Varga, 2009a).
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Fig. 5. Filtered residual r1 response to a unit step in f1

We can now apply the whitening filters to each residual
generator output corresponding to the signature structure

S2. The resulting total order of the detector is 25 and the
orders of individual detectors are {5, 5, 5, 5, 3, 2}. Note that
this order is less than the global order, 32, of the corre-
sponding residual generator obtained in the deterministic
setting. The time responses for three single faults in f1,
f3, and f8 are shown in Fig. 6. Observe that the achieved
fault signatures (columns 1, 3, and 8 of S2) can be easily
read out form the corresponding time responses.
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The global detector corresponding to S3 has order 17, with
the individual detectors having orders: {1, 3, 3, 1, 3, 3, 1, 2}.
As before, the first order detectors correspond to a com-
ponent level monitoring.

The main difficulty of using the stochastic setting is that
the dynamics of the detector is determined by the zeros
of the outer factors, and thus is fixed. This led to a poor
dynamics of the fault detection system in always all cases.
Thus, although the achieved orders are generally smaller
than for the equivalent deterministic problems, still the
detectors are more difficult to be used in safety critical
applications like an aircraft.

6. CONCLUSIONS

The combination of component and system level fault
monitoring allows the practical solution of the FDIP for 8
primary actuator faults in both deterministic and stochas-
tic settings. We have shown that 3 surface angle sensors
are sufficient for this purpose. All residual generators
have least orders being obtained using recently developed
algorithms based on minimal dynamic cover techniques
(Varga, 2007a). All computations have been done using
recently developed numerical software tools included in the
current version (V0.8) of the Fault Detection Toolbox
of DLR. The computed detectors for the nominal case will
serve as specifications for a more realistic design of robust
residual generators.

Two aspects are worth of mentioning to illustrate the new
features of the performed synthesis. The first aspect is
the use of least order synthesis techniques, which allow
to obtain detectors of acceptable complexity. Note that
without this feature, the generic order of each individual
detector is the system order (see (Hou and Müller, 1994)
for examples) and thus not acceptable for larger order
systems. For example, for the 6 detectors used to achieve
the signature S2 in both deterministic and stochastic
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settings, the expected order is 6 × 32 = 192, which is
certainly not appropriate for on-line implementations.

The second aspect is determined by the high reliability
of the underlying computational algorithms and of the
corresponding software. This feature allows to manipulate
a single, relatively large order system representation to
achieve a seamless transition between component and
system level monitoring. In the extreme case when all angle
sensors are provided, the computed results are the same
as individually designed detectors for each actuator.
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Appendix A. SYSTEM VARIABLES

x =





























roll rate
pitch rate
yaw rate
first component of quaternion
second component of quaternion
third component of quaternion
fourth component of quaternion
ground speed X axis
ground speed Y axis
ground speed Z axis





























y =





























roll angle
pitch angle
yaw angle
angle of attack
angle of sideslip
flight path angle
roll rate
pitch rate
yaw rate
true airspeed





























u =











































right outer aileron deflection
right inner aileron deflection
spoiler1 deflection

...
spoiler12 deflection
left inner aileron deflection
left outer aileron deflection
right elevator deflection
stabilizer trim angle
left elevator deflection
rudder deflection
left engine thrust
right engine thrust











































d =

(

wind speed X axis
wind speed Y axis
wind speed Z axis

)

f =





















right outer aileron fault
right inner aileron fault
left inner aileron fault
left outer aileron fault
right elevator fault
left elevator fault
stabilizer fault
ruder fault




















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