elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Kontakt | English
Schriftgröße: [-] Text [+]

Curvelet Approach for SAR Image Denoising, Structure Enhancement, and Change Detection

Schmitt, Andreas und Wessel, Birgit und Roth, Achim (2009) Curvelet Approach for SAR Image Denoising, Structure Enhancement, and Change Detection. City Models, Roads and Traffic (CMRT), 03.-04.09.2009, Paris (France). ISSN 1682-1777

[img]
Vorschau
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
1MB

Kurzfassung

In this paper we present an alternative method for SAR image denoising, structure enhancement, and change detection based on the curvelet transform. Curvelets can be denoted as a two dimensional further development of the well-known wavelets. The original image is decomposed into linear ridge-like structures, that appear in different scales (longer or shorter structures), directions (orientation of the structure) and locations. The influence of these single components on the original image is weighted by the corresponding coefficients. By means of these coefficients one has direct access to the linear structures present in the image. To suppress noise in a given SAR image weak structures indicated by low coefficients can be suppressed by setting the corresponding coefficients to zero. To enhance structures only coefficients in the scale of interest are preserved and all others are set to zero. Two same-sized images assumed even a change detection can be done in the curvelet coefficient domain. The curvelet coefficients of both images are differentiated and manipulated in order to enhance strong and to suppress small scale (pixel-wise) changes. After the inverse curvelet transform the resulting image contains only those structures, that have been chosen via the coefficient manipulation. Our approach is applied to TerraSAR-X High Resolution Spotlight images of the city of Munich. The curvelet transform turns out to be a powerful tool for image enhancement in fine-structured areas, whereas it fails in originally homogeneous areas like grassland. In the change detection context this method is very sensitive towards changes in structures instead of single pixel or large area changes. Therefore, for purely urban structures or construction sites this method provides excellent and robust results. While this approach runs without any interaction of an operator, the interpretation of the detected changes requires still much knowledge about the underlying objects.

Dokumentart:Konferenzbeitrag (Vortrag, Paper)
Titel:Curvelet Approach for SAR Image Denoising, Structure Enhancement, and Change Detection
Autoren:
AutorenInstitution oder E-Mail-Adresse der Autoren
Schmitt, AndreasAndreas.Schmitt@dlr.de
Wessel, BirgitBirgit.Wessel@dlr.de
Roth, AchimAchim.Roth@dlr.de
Datum:September 2009
Referierte Publikation:Ja
In ISI Web of Science:Nein
Seitenbereich:Seiten 151-156
ISSN:1682-1777
Status:veröffentlicht
Stichwörter:SAR, Imagery, Structure, Extraction, Change Detection, Method, Urban
Veranstaltungstitel:City Models, Roads and Traffic (CMRT)
Veranstaltungsort:Paris (France)
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:03.-04.09.2009
HGF - Forschungsbereich:Verkehr und Weltraum (alt)
HGF - Programm:Weltraum (alt)
HGF - Programmthema:W EO - Erdbeobachtung
DLR - Schwerpunkt:Weltraum
DLR - Forschungsgebiet:W EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):W - Vorhaben Anwendungen Erdbeobachtung - HGF-Kooperation EOS (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Umwelt und Sicherheit
Hinterlegt von: Andreas Schmitt
Hinterlegt am:06 Apr 2010 10:45
Letzte Änderung:12 Dez 2013 20:49

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Copyright © 2008-2013 Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.