

Polarimetric Weather Radar Remote Sensing

Martin Hagen

Institut für Physik der Atmosphäre, DLR Oberpfaffenhofen

State of the Art of Weather Radar

- Doppler and dual-polarization
- Cancellation of ground clutter
- Correction of attenuation and propagation effects
- ✓ Automatic quality control
- Identification of hydrometeors
- Quantitative estimation of precipitation

Weather Radar

Combination of 16 weather radars of Deutscher Wetterdienst.

Weather radars are well suited to locate precipitation.

Meteorologists require more:

- → how much rainfall?
- what kind of hydrometeors?
- how will the weather be in 10 .. 90 minutes?

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Institut für Physik der Atmosphäre

A weather radar measures the power (and phase) of a transmitted electro-magnetic wave packet reflected by a particle:

Radar equation for volume targets:

Particles smaller than the wave length: (C-Band λ = 5 cm, D < 5 mm) Rayleigh-scatter

Reflectivityfactor Unit: mm⁶ m⁻³ logarithmic unit: dBZ

LR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Institut für Physik der Atmosphäre

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Polarization and Doppler

Cloud and precipitation particles have different shapes, phase, size and falling behaviour

→ scattering properties → Polarization

Precipitation is directly related to atmospheric motion.

 → Hydrometeors are displaces
 → Doppler shift of waves

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Polarization and Doppler Radar Development

Institut für Physik der Atmosphäre

Weather Radars in Europe (2005)

(almost) all are Dopplerized

Deutsches Zentrum

DLR

für Luft- und Raumfahrt e.V.

in der Helmholtz-Gemeinschaft

 rapidly increasing number of polarimetric radars

Polarization Doppler Radar POLDIRAD

1986 installed as the first fully polarimetric weather radar in Europe. Operations normally for research, not for operational service

www.pa.op.dlr.de/poldirad

Samples of research projects:

- Support of hail fighting in the area Rosenheim / Miesbach / Bad Tölz
- Thunderstorm and hail
- Propagation of waves
- Aircraft icing
- Vertical transport of pollutants by thunderstorms
- Thunderstorm and lightning
- Wake turbulence
- Aviation, thunderstorms and snow

Technical Characteristics

Frequency	5.5035 GHz
Wave Length	5.45 cm
Peak Power	250 kW
Pulse Rep. Freq.	400 - 2400 Hz
Pulse Length	0.5, 1.0, 2.0 μs
Beam Width	1.0°
Maximum Range	300 km
Products	Reflectivity Doppler Velocity Diff. Reflectivity Depolar. Ratio Different. Phase

Institut für Physik der Atmosphäre

Doppler

The Doppler effect describes the observed frequency change at a relative motion between:

- signal source and
- observer

(propagation speed of the signal c) (relative motion with speed v)

example sound: $v = \pm 20$ m/s, $f_0 = 5$ kHz, c = 300 m/s => f = 5 ± 0.333 kHz example radar: $v = \pm 20$ m/s, $f_0 = 5$ GHz, $c = 3 \times 10^8$ m/s => f = 5 ± 0.000000333 GHz

Interpretation of the Doppler Velocity

blue/green towards radar red/orange away from radar

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

DLR

Institut für Physik der Atmosphäre

Uniform Wind Technique

Assumption of a constant wind field along a segment of a circle. Average over a sector segment (app. 20 km x 20°)

 $v_{t} = u_{0} \sin \phi \cos \theta$ $+ v_{0} \cos \phi \cos \theta$ $v_{t} = \partial v_{r} / \partial \phi$

Size of segment:

- get $\partial v_r / \partial \phi$ sufficient accurate
- wind constant within segment.

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Institut für Physik der Atmosphäre

Dual- Doppler Radar Observations

- For research and smallscale nowcasting high resolution 3-D wind fields are required
- Combination of Doppler observations from different directions using more than one radar

Dual-Doppler Analyse

Doppler-velocity measured by the individual radars

 Deutsches Zentrum
 für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Institut für Physik der Atmosphäre

Doppler Wind Field using dual-Doppler and Uniform Wind

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Institut für Physik der Atmosphäre

Bistatic Doppler Radar

- 1 active Doppler radar
- + one or more passive bistatic receivers.

DLR system:

first system operating with a magnetron

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Institut für Physik der Atmosphäre Martin Hagen, WFMN09, Chemnitz, 25 - 27 Nov. 2009

11:15/11

E

Puliach

Call to est

y silvest

RALIE AU

inest ALAT

Pe-Re-Derg

Bistatic Doppler Radar

DLR Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Polarimetric Radar Observations

Polarimetric Radar Observations

in der Helmholtz-Gemeinschaft

Institut für Physik der Atmosphäre

Example: shape of falling raindrops

Falling raindrops (app. 2 - 8 m/s) have a oblate shape due to aerodynamics.

Observations in a vertical pointing wind channel (Univ. Mainz), 5 mm drop.

Institut für Physik der Atmosphäre

Martin Hagen, WFMN09, Chemnitz, 25 - 27 Nov. 2009

Ouarks

Rain rate and radar reflectivity

Empirical relation between rain rate R and reflectivity z

 $R = a z^b$

 10^{6}

10⁵

10⁴

10³

10²

10¹

10⁰

10

0

N(D) (mm⁻¹ m⁻³

z in mm⁻⁶ m⁻³ R in mm/h

10⁶

10⁵

10⁴

10³

10²

 10^{1}

10⁰

10

0

N(D) (mm⁻¹ m⁻³)

5

Coefficients *a* and *b* depend on drop size distribution.

R=13.6 mm/h.

Z=44.6 dBZ

3

2

Deutsches Zentrum

Diameter (mm)

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

2

Martin Hagen, WFMN09, Chemnitz, 25 - 27 Nov. 2009

3

Diameter (mm)

4

5

Rain rate and polarimetric radar measurements

Additional information about raindrop size distribution by differential reflectivity: sensitive to large drops.

 $R = a z^{b} Z D R^{c}$

für Luft- und Raumfahrt eV in der Helmholtz-Gemeinschaft

Small errors in polarimetric quantities can give large errors in rain rate estimation.

100 Rainfall rate with Rainfall rate Z-ZDR-R (mm/h) Z - ZDR - R relation 10 relative error 4% 0.1 100 10 Rainfall rate Disdrometer (mm/h) 7000 1-minute drop size distribution, Oberpfaffenhofen, 1996

Institut für Physik der Atmosphäre

Martin Hagen, WFMN09, Chemnitz, 25 - 27 Nov. 2009

5

Thunderstorm line observation 12 Aug. 2004

Hydrometeor classification 12 Aug. 2004

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Institut für Physik der Atmosphäre

Classification by Vivekanandan et al. (1999)

- ✓ Additional parameters like correlation coefficient $\rho_{HV}(0)$ and specific differential phase K_{DP} .
- Decision tree becom difficult to define
- "Fuzzi Logic"
 will be used to
 identify the most
 probable particle
 class.

Deutsches Zentrum für Luft- und Raumfahrt e.V. Institut

Institut für Physik der Atmosphäre

Reflectivity

Differential reflectivity

Classification

Attenuation and Propagation degrades Classification

✓ Attenuation can't be recognized easily (C-Band)

Frequently observed are negative ZDR values behind reflectivity cores
 negative ZDR is not expected in rain

Institut für Physik der Atmosphäre

Attenuation: Vertical Cross-Section (RHI)

- strong attenuation at 3 4 km 7 height (below melting layer), high Z and LDR indicate presence of hail.
- hail spike (flare echo) ????
- must be wet melting hail with 7 shedding water shell.
- unknown particle properties 7 \rightarrow no correction possible

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

1210 km

10,0 km

8.0 km/

6.0 km

4.0 km

2.0 km

Institut für Physik der Atmosphäre

Quality index field for polarimetric radar products

Reflectivity

Quality control settings for use of polarimetric data for rain rate estimation.

DLR für Lu

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Institut für Physik der Atmosphäre

From Research to Application

Further presentations:

- ground clutter(Jens Reimann)
- hydrometeor classification (Jörg Steinert)
- Doppler moments (Ondrej Suchý)
- rain rate estimation (Patrick Tracksdorf)
- attenuation correction (Tobias Otto)

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft