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Abstract—Synthetic aperture radar tomography (TomoSAR)
extends the synthetic aperture principle into the elevation direc-
tion for 3-D imaging. It uses stacks of several acquisitions from
slightly different viewing angles (the elevation aperture) to re-
construct the reflectivity function along the elevation direction by
means of spectral analysis for every azimuth–range pixel. The new
class of meter-resolution spaceborne SAR systems (TerraSAR-X
and COSMO-Skymed) offers a tremendous improvement in to-
mographic reconstruction of urban areas and man-made in-
frastructure. The high resolution fits well to the inherent scale
of buildings (floor height, distance of windows, etc.). This paper
demonstrates the tomographic potential of these SARs and the
achievable quality on the basis of TerraSAR-X spotlight data
of urban environment. A new Wiener-type regularization to the
singular-value decomposition method—equivalent to a maximum
a posteriori estimator—for TomoSAR is introduced and is ex-
tended to the differential case (4-D, i.e., space–time). Different
model selection schemes for the estimation of the number of
scatterers in a resolution cell are compared and proven to be ap-
plicable in practice. Two parametric estimation algorithms of the
scatterers’ elevation and their velocities are evaluated. First 3-D
and 4-D reconstructions of an entire building complex (including
its radar reflectivity) with very high level of detail from spaceborne
SAR data by pixelwise TomoSAR are presented.

Index Terms—Differential synthetic aperture radar tomogra-
phy (D-TomoSAR), spotlight SAR, TerraSAR-X, urban mapping.

I. INTRODUCTION

A CONVENTIONAL space- or airborne synthetic aperture
radar (SAR) maps the 3-D reflectivity distribution of a

scene to be imaged into the 2-D azimuth–range (x−r) plane.
This can be seen as a projection along the third radar coordinate,
namely, elevation (s). x, r, and s form an orthogonal coordinate
system specific to the particular SAR imaging geometry. This
projection particularly handicaps the interpretation of SAR
images of the following: 1) volumetric scatterers and 2) urban
areas and man-made objects, i.e., objects with constructive
elements oriented at steeper angles than the local incidence
angle.
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Fig. 1. TomoSAR imaging geometry. The coordinate s is referred to as
elevation.

SAR tomography (TomoSAR), introduced to SAR in the
early 1990s [1], extends the synthetic aperture principle into
the elevation direction for 3-D imaging (within the first Born
approximation). It uses data stacks of several acquisitions from
slightly different viewing angles (the elevation aperture) to re-
construct the reflectivity function along the elevation direction
by means of spectral analysis for every azimuth–range pixel,
and hence obtains focused 3-D SAR images (Fig. 1). A further
extension is differential SAR tomography (D-TomoSAR) [2],
also referred to as 4-D focusing. It provides retrieval of both the
elevation and the deformation information of multiple scatterers
inside an azimuth–range resolution cell and therefore obtains a
4-D (space–time) map of scatterers.

Compared to computed axial tomography, known from med-
ical imaging, TomoSAR uses only a small angular diversity.
Hence, instead of back projection, spectral estimation is suf-
ficient for TomoSAR if the range migration δr caused by
the different viewing angles is much smaller than the range
resolution ρr. This gives a limitation to the extent Δs of the
illuminated objects

Δs � ρrr

Δb
(1)

where r is the range and Δb is the perpendicular (or effective)
baseline range (i.e., the elevation aperture length). The term
“baseline” is a heritage of interferometry. It is the spatial dimen-
sion in the elevation aperture, relative to a reference (master)
track.

The first experiments in TomoSAR were carried out in the
laboratory [3] under ideal experimental conditions or by using
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airborne systems [1], [4]. Spaceborne TomoSAR tests were
reported in [5] and [6]. It has been applied to C-band European
Remote Sensing Satellite (ERS) data over extended scenes in
[7] and to TerraSAR-X data in [8]. In [9], the single- and
double-scatterer cases were separated. The concept of 4-D SAR
imaging (D-TomoSAR) was proposed in [2] and first applied to
ERS data in [10].

The major challenges in spaceborne TomoSAR are the fol-
lowing. First, acquisitions are unevenly distributed in baseline,
i.e., in the elevation aperture space, so that appropriate regular-
ization is required instead of a classical Fourier-based inversion
[11]. Second, 3-D data cannot be collected simultaneously,
at least with existing satellites, but must rather be acquired
via repeated passes that are separated in time. Hence, time-
dependent phase terms from motion and from the propagation
medium are present in the data and must be considered. Third,
the number of acquisitions may be limited.

In 2007, SAR remote sensing from space made a big leap
forward; the German TerraSAR-X and the Italian COSMO-
Skymed satellites have been launched. They deliver SAR data
with a very high spatial resolution of up to 1 m compared
to medium (10–30-m)- and high (3–10-m)-resolution SAR
systems available so far. The advantage of very high resolution
(VHR) imagery for cartographic applications is obvious. The
real potential of this class of SAR data, however, lies in appli-
cations, where the coherent nature of SAR data is exploited,
like interferometry or tomography. The 1-m resolution is par-
ticularly helpful when it comes to 2-D, 3-D, or 4-D imaging
of buildings and urban structures. The inherent spatial scales of
buildings are dominated by the typical height between floors of
3–3.5 m, i.e., in slant range (at 30◦) 2.6–3.0 m, and the distance
of windows. Hence, for imaging of urban structures, we can
expect a tremendous improvement in information content when
we go from high to VHR. We work with TerraSAR-X spotlight
data. These VHR X-band spaceborne repeat-pass tomographic
data stacks of urban areas have some particular properties: A
very detailed view of individual buildings is possible; the den-
sity of bright (high clutter-to-noise ratio) points, like persistent
scatterers, is extremely high (40 000–100 000/km2). However,
also nonlinear (e.g., thermally induced) movements of different
building parts must be expected and will introduce additional
phase errors and require robust inversion methods.

This paper aims at demonstrating the potential of the new
class of VHR spaceborne SAR systems for TomoSAR in ur-
ban environment. In particular, we introduce a new Wiener-
type regularization to the singular-value decomposition (SVD)
method [7] for TomoSAR and extend it to the D-TomoSAR case
(Section IV). Different model selection schemes for the esti-
mation of the number of scatterers are evaluated and validated
(Section V). Two parametric estimation algorithms of the scat-
terers’ elevation and their velocities are evaluated (Section VI).
We demonstrate first 3-D and 4-D reconstructions of an entire
building from spaceborne VHR data by pixelwise TomoSAR
(Section VII). We will concentrate on urban areas and man-
made infrastructure. Volumetric objects, like trees, can be con-
sidered incoherent in X-band repeat pass and are hence treated
as noise. A limited number (typically one to three) of scatterers
is expected along every elevation profile that allows parametric
estimation.

Fig. 2. (Left) Elevation aperture sampling positions of the 25 acquisitions.
(Right) Spatial–temporal baseline distribution (to be used for D-TomoSAR in
Section III).

II. DATA SET

For the purpose of this paper, we work with TerraSAR-X
“high-resolution spotlight data” (TerraSAR-X product termi-
nology) acquired with a range bandwidth of 300 MHz. They
have a slant-range resolution of 0.6 m and an azimuth resolution
of 1.1 m. In this mode, image lengths of 5–10 km can be
acquired, which is sufficient for our investigations in urban
environments. Note that interferometric use of spotlight data
requires some special care, e.g., in synchronous data acqui-
sition, coregistration, and resampling [12]. Our test site is
Las Vegas, NV, U.S. The acquisition repeat cycle is 11 days.
The orbit of TerraSAR-X is controlled in a predefined tube of
500 m diameter throughout the entire mission [13]. Due to this
small orbit tube, the precondition for the spectral estimation ap-
proximation mentioned in (1) is very easily fulfilled. It is worth
mentioning that, unlike in airborne TomoSAR, the relatively
large temporal separation of the repeated passes of spaceborne
data collection introduces motion and atmospheric phase con-
tributions that have to be accounted for—albeit as nuisance pa-
rameters. This requires a lot more data sets to get unambiguous
results and resolve multiple scatterers inside an azimuth–range
cell. In our experiment, a data stack of 25 scenes is used for our
test site. The elevation aperture sampling positions are shown
in Fig. 2. The elevation aperture size Δb is about 269.5 m.
According to (1), with r = 704 km and ρr = 0.6 m, the eleva-
tion extent Δs of the illuminated objects must be much smaller
than 1568 m. This is always true for our test site. Therefore,
in the following sections, we handle TomoSAR as a spectral
estimation problem, and the detailed system model will be
introduced in Section III.

For nonparametric spectral analysis, the expected elevation
resolution ρs, i.e., the width of the elevation point response
function (PRF), depends on the elevation aperture length Δb
and is approximately (sufficiently dense sampling of the eleva-
tion aperture provided)

ρs =
λr

2Δb
(2)

where λ is the wavelength. It results in 40.5-m resolution in
elevation expected for our stack, which is approximately 20-m
resolution in height with the elevation-to-height factor sin θ,
where θ is the incidence angle and equals 31.8◦ here. This,
however, does not mean that individual scatterers can only be
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Fig. 3. Possible signal contributions in a single SAR image azimuth–range
pixel.

located to within this poor elevation resolution. The Cramér–
Rao lower bound (CRLB) on elevation estimates can be shown
to be [14]

σŝ =
λr

4π
√

NOA · √2SNR · σb

(3)

where NOA is the number of acquisitions, SNR is the signal-
to-noise ratio, and σb is the standard deviation of the baseline
distribution. For instance, the stack used in this example has
σb = 70.9 m. For many bright points, we can assume an SNR
of 10 dB; then, the CRLB on elevation estimation is 1.1 m, i.e.,
almost a 1/40 of the elevation resolution.

III. TOMOSAR

A. System Model

For a single SAR acquisition, the focused complex-valued
measurement gn(x0, r0) of a specific azimuth–range pixel
(x0, r0) for the nth acquisition with aperture position bn and
temporal baseline tn is the integral of the reflected signal along
the elevation direction, as shown in Fig. 3. In VHR X-band data,
we expect the following signal contributions (see Fig. 3).

1) Weak diffuse scattering from—mostly horizontal or
vertical—rough surfaces (roads and building walls). They
have an elevation extent of ρr/ tan θ for horizontal and
ρr · tan θ for vertical surfaces. In both cases, these extents
are much smaller than our elevation resolution ρs, and
hence, these surfaces can be treated as discrete scatterers
in the elevation direction (delta functions).

2) Strong returns from metallic structures or specular and
dihedral or trihedral reflections. These are points that
would also be used in persistent scatter interferometry.
They are the dominating signal contributions. With VHR
SAR data, the density of these points can be very high, as
mentioned before.

3) Returns from volumetric scatterers, e.g., from vegetation.
These result in a continuous signal background in el-
evation. These ensembles of scatterers, however, often
decorrelate in time, and their response is therefore treated
as noise.

The noise sources are the following.
a) Gaussian noise, which is caused by thermal noise and

temporal decorrelation, as mentioned previously.

b) Calibration errors in amplitude. According to an unpub-
lished DLR internal calibration report [15], the radiomet-
ric stability of TerraSAR-X, i.e., the amplitude variations
within one stack, is 0.14 dB and is therefore negligible
compared to our typical SNR.

c) Phase errors caused by atmospheric delay and unmodeled
motion. They require robust and phase-error-tolerant esti-
mation methods.

One SAR acquisition may be considered to be one tomo-
graphic projection of the complex reflectivity of the object
along elevation [16] (note that the deformation term is ignored
here for simplicity)

gn =
∫
Δs

γ(s) exp (−j2πξns) ds, n = 1, . . . , N (4)

where γ(s) represents the reflectivity function along elevation
s. ξn = −2bn/(λr) is the spatial (elevation) frequency. The
continuous-space system model of (4) can be approximated by
discretizing the continuous reflectivity function along s within
its extent Δs by sl (l = 1, . . . , L)

gn ≈ δs ·
L∑

l=1

γ(sl) exp(−j2πξnsl), n = 1, . . . , N (5)

where L is the number of discrete elevation indices and the
discretization interval is δs = Δs/(L − 1). After dropping the
inconsequential leading constant δs, the system imaging model
becomes

g = R γ (6)

where g is the measurement vector with N elements gn, R is
an N × L mapping matrix with Rnl = exp(−j2πξnsl), and γ
is the discrete reflectivity vector with L elements γl = γ(sl).
Equation (6) is essentially an irregularly sampled discrete
Fourier transform of the elevation profile γ(s). The objective
of TomoSAR is to retrieve the reflectivity profile for each
azimuth–range pixel and then use it to estimate scattering para-
meters such as the number of scatterers present in the cell, their
elevations, reflectivities, and line-of-sight (LOS) deformation
velocities (see Section IV). This can be achieved from a spectral
analysis of the multipass data stack with N SAR acquisitions.

B. Processing Sequence

The processing procedure, with the objective of reconstruct-
ing the 3-D scatterer distribution from measurements of the
scattered field and estimating LOS deformation, is shown in
Fig. 4. The preprocessing, including atmospheric phase screen
correction, is performed by the German Aerospace Center
(DLR)’s PSI-GENESIS system [17]–[20].

To acquire an estimate of the reflectivity profile along
elevation for a certain azimuth–range pixel, nonparametric
spectral analysis is used for the first stage of processing.
Except the maximum elevation extent Δs of the object and
some statistical properties of the prior and the noise, no prior
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Fig. 4. Processing sequence of tomographic SAR data stacks.

knowledge, such as the number of scattering objects, and
no assumption about the scattering mechanism are required.
The estimated profile is then used as a prior knowledge for
model order selection and parameter estimation. There are
many inversion methods, such as SVD, Capon, multiple signal
classification (MUSIC), etc. However, it is not our purpose
to compare different spectral estimation methods, which have
been discussed in detail in [21]–[23]. The high phase errors
due to unmodeled motion require robust methods (see self-
cancellation of Capon [24]). In addition, we want to maintain
the full range and azimuth resolution since the 1-m range–
azimuth resolution of the data is essential for urban applica-
tions. As mentioned in Section I, the inner scale of buildings is
typically in the range of 2–3 m. Any blurring, as it is necessary
for the covariance matrix estimation in MUSIC, Capon, etc.,
is lethal for the information content; individual bright points
will be merged to bright clusters. Moreover, the typical signals
of buildings are not ergodic. Taking all this into account, the
SVD-based method has been chosen because of its good behav-
ior at high noise levels without compromising azimuth–range
resolution. With nonparametric estimates, the scatterers’ distri-
bution in the elevation–velocity (v−s) plane, to be introduced
later, and a 3-D reflectivity map of the entire illuminated
scene are obtained. They are input to model order selection,
i.e., to the estimation of the number of discrete (pointlike)
scatterers.

With prior knowledge of the number of scatterers, a param-
etric spectral estimator, for instance, nonlinear least squares
(NLS), which is the maximum-likelihood estimator (MLE) for
Gaussian white noise, can be applied to the measurements to
refine the estimates at the cost of large computational effort.
Alternatively, we can simply estimate the location of the scatter-
ers by detecting the peaks of the nonparametric SVD estimates,
which is much faster but may introduce estimation bias caused
by interference between multiple scatterers.

We will not go into the details of preprocessing as they are
sufficiently addressed in the literature. The remaining modules
(gray boxes in Fig. 4) are outlined next.

IV. MAP ESTIMATOR AND WIENER SVD

The standard MAP estimator for γ from (6) is given by

γ̂MAP =
(
RTC−1

εε R + C−1
γγ

)−1
RTC−1

εε g (7)

where Cεε is the noise covariance matrix and Cγγ is the
covariance matrix of the prior. It reduces to

γ̂MAP =
(
RTR + |ε|2I)−1

RTg (8)

if both the noise and the prior are assumed to be white, i.e.,
the noise covariance matrix Cεε = |ε|2I, the covariance matrix
of the prior Cγγ = I, and the signal power is assumed to be
normalized to unity. This nonparametric spectral estimation
method has been chosen because of its robustness at high noise
levels without sacrificing the azimuth–range resolution.

Although the MAP estimator from (8) could be implemented
directly, the treatment of the problem in the singular-value (SV)
space is helpful. As will be shown, the distribution of the SVs
helps us understand the determinedness of the problem and
estimate the noise level.

In this section, we will show that the MAP estimator is
equivalent to a Wiener-type regularization of the SVs. It is a
more strict solution than the original truncated SVD (TSVD)
method [16]. We also give its extension to D-TomoSAR.

A. SVD method

The SVD inversion framework has been elegantly described
in [16]. The discrete reflectivity signal γ can be reconstructed
from g through pseudoinversion of the imaging system matrix
R [(6)]. However, due to the nonuniform track distribution, the
solution may include significant noise propagation due to the
ill-conditioned nature of the problem. The SVD is a simple
and valuable tool for analyzing image quality and the amount
of independent information about the unknowns that can be
reliably retrieved from observations in the presence of noise
[11]. The SVD of R is a decomposition of the form

R = UΣVT =
N∑

n=1

unσnvT
n . (9)

where U = (u1, . . . ,uN) and V = (v1, . . . ,vN) are matrices
with orthonormal columns, UTU = VTV = IN, and Σ =
diag(σ1, . . . , σN ) has nonnegative diagonal elements such that
σ1 ≥ · · · ≥ σN ≥ 0. σn denotes the SVs of R, while the vec-
tors un and vn are the left and right singular vectors of R,
respectively. Consider now that an estimate of γ is obtained via
the pseudoinverse R†. Using the SVD, we get

γ̂ = R†g =
N∑

n=1

σ−1
n

(
uT

ng
)
vn. (10)

Due to the reciprocal of σn, noise propagation caused by
small SVs will compromise this solution, and regularization
tools are required.
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Fig. 5. (Left) SV spectra corresponding to ill-conditioned matrices with well-
and ill-determined numerical ranks. (Right) Corresponding SV spectrum of our
TomoSAR configuration with elevation aperture sampling from Fig. 2.

B. Wiener Regularization

A well-known method for dealing with an ill-conditioned
matrix in problem (7) is TSVD [25]. The basic idea of TSVD
and other regularization methods is to impose additional re-
quirements on the solution, thus hopefully damping the con-
tributions from the errors of the right-hand side of (7). In the
case of TSVD, this is achieved by discarding the components of
the solution corresponding to the smallest N − Q SVs. These
contributions to the solution are most likely noise and would be
amplified unduely by the inverse of σn. Q is called “numerical
rank” or “effective rank” of R defined by the number of SVs
bigger than some noise level ε. The TSVD was implemented
in [16] for an experiment with 44 acquisitions, and robust
performance was achieved.

Depending on the SV spectrum, it is common to charac-
terize an ill-conditioned matrix as either with a well- or an
ill-determined numerical rank [26]. An ill-conditioned matrix
with a well-determined numerical rank has a well-defined gap
between the significant SVs contributing to the signal space
and the small SVs contributing to the noise space (see Fig. 5,
left, green crosses). Matrices with ill-determined rank degrade
gradually from the signal to the noise space (see Fig. 5, left,
black dots). Any distribution of SVs in between the two ex-
tremes of the left figure of Fig. 5 may, of course, be expected
in practical applications. However, from the perturbation theory
for the TSVD [25], TSVD is a stable method only for problems
with a well-determined numerical rank.

The corresponding SVs of our Las Vegas TerraSAR-X data
set with the baseline distribution of Fig. 2 are shown in the right
plot of Fig. 5. It is obviously of ill-determined numerical rank.
The result is then overly dependent on how a hard threshold
is set. Transforming the MAP estimator of (8) to the SV space
results readily in a soft thresholding, e.g., weighting the SVs
according to their magnitudes, also referred to as a Tikhonov
regularization

γ̂MAP =
(
ΣT Σ + |ε|2I)−1

VΣT UT g

=
N∑

n=1

σ−1
n,Wiener

(
uT

ng
)
vn (11)

where σ−1
n,Wiener denotes the optimum weights

σ−1
n,Wiener =

σn

|σn|2 + |ε|2 . (12)

It replaces σ−1
n in (10). |ε|2 is the noise power level. A small

ε corresponds to a high SNR. This type of weighting resembles
the Wiener filter under white noise, and hence, we call the

Fig. 6. Two close scatterers separable with D-TomoSAR due to the different
velocities. (Left) Reconstructed reflectivity profile with TomoSAR; the scatter-
ers are not separable. (Right) Retrieved scatterer distribution in the s−v plane
with D-TomoSAR.

method SVD-Wiener. It provides more stable performance,
particularly for the case of few (15–30) acquisitions.

Now, we come to the problem of estimating the noise level ε.
Let us define coefficients βn = uT

n g, which are the projection
of measurements onto the singular vectors. The noise level
can be estimated from the nε coefficients βn (n = N − nε +
1, . . . , N) corresponding to the noise space (in our experiment,
nε can be set to 14; see Fig. 5, right). An estimate ε̂ of the noise
level ε for every azimuth–range pixel can be obtained via

ε̂ =

√√√√ N

nε

N∑
n=N−nε+1

|βn|2. (13)

C. Extension to D-TomoSAR

Taking the motion term into account, the system model (4)
can be extended to

gn =
∫
Δs

γ(s) exp (−j2π (ξns + ηnV (s))) ds,

n = 1, . . . , N (14)

where V (s) is the deformation LOS velocity profile along
elevation and ηn = 2tn/λ may, in analogy, be called a “velocity
frequency.” Formally, (14) can be rewritten as

gn =
∫
Δv

∫
Δs

γ(s)δ (v − V (s)) exp (−j2π(ξns + ηnv)) ds dv,

n = 1, . . . , N (15)

where Δv is the velocity range, which is typically on the order
of some tens of centimeters per year. Equation (12) is a 2-D
Fourier transform of γ(s)δ(v − V (s)), which is a delta line in
the elevation–velocity (s−v) plane along v = V (s). Projected
onto the elevation axis, γ(s)δ(v − V (s)) follows the reflectivity
profile γ(s). If we accept γ(s)δ(v − V (s)) as the object to
be reconstructed, the SVD-based spectral estimation methods
used for TomoSAR can be easily extended to the 4-D case
that includes the LOS deformation terms, i.e., D-TomoSAR [2],
[10]. Instead of treating the deformation phase term as noise,
D-TomoSAR can provide retrieval of the elevation and
deformation information of multiple scatterers inside an
azimuth–range resolution cell and thus obtain a 4-D map of
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scatterers. It is required for reliable 3-D and 4-D city mapping
from repeat-pass acquisitions.

Likewise, due to the ill-conditioning of the problem, regular-
ization tools, such as TSVD and Wiener filtering, can be im-
plemented, as described earlier. Fig. 6 shows an example. Two
scatterers with an elevation distance of 20 m (s1 = 0 m; s2 =
20 m) are simulated. With standard 3-D TomoSAR, they are
not separable with our baseline configuration since they are
within a 40-m elevation resolution element, as shown in the left
plot of Fig. 6. However, due to their different velocities (V1 =
0 cm/year; V2 = −2 cm/year), they can be easily distinguished
in the s−v plane, as shown in the right panel of Fig. 6.

V. MODEL ORDER SELECTION

By implementing nonparametric spectral estimation, the re-
flected power along the elevation direction can be extracted.
Model selection schemes aim at estimating the number of point
scatterers along elevation inside an azimuth–range pixel [29].

Let k be a parameter that defines the complexity of the
model. In our case, k is the number of parameters to describe γ.
It depends on the number of scatterers np in the azimuth–range
pixel. As each scatterer can be described by three parameters
(amplitude, phase, and elevation), k = 3 np. Let further θ(k) be
the vector of the unknown amplitudes, phases, and elevations
for all the np scatterers. Then, the reflectivity profile can be
written as γ(θ(k)). The relationship between γ(θ(k)) and the
observed data g is described by the observation model [(6)].
p(g|θ(k), k) is the likelihood function. Under the assumption
that the model errors or disturbances e = g − R γ(θ(k)) are
circular Gaussian distributed with zero mean and a covari-
ance matrix of Cεε = |ε|2I, the likelihood function can be
written as

p (g|θ(k), k) =
1

πN |ε|2N
exp

(
− 1
|ε|2 ‖g − Rγ (θ(k))‖2

)
.

(16)

It will increase with increasing k, since a more complex model
fits the observations better. As a consequence, maximization
of the likelihood function is not sufficient for model selection.
Instead of using only the likelihood as a criterion, penalized
likelihood criteria are used for model selection. The general
form of penalized likelihood criteria is

θ̂(k) = arg max
θ(k)

{ln p (g|θ(k), k) − C (θ(k))} . (17)

ln p(g|θ(k), k) is the log-likelihood and C(θ(k)) is a com-
plexity penalty, from which we can see that model selection is
actually a tradeoff between how well the model fits the data and
the complexity of the model. Note that the likelihood depends
on the noise model, e.g., for Gaussian noise, the log-likelihood
is essentially the sum of squared residuals. If this term only
depends on the model dimension, then

k̂ = arg max
k

{
ln p

(
g|θ̂(k), k

)
− C(k)

}
. (18)

In other words, estimate the best parameters for each k, and
then choose among these models. In our application, model

Fig. 7. Probability of correctly detecting two scatterers using different model
selection schemes.

complexity only depends on the number of scatterers np in the
azimuth–range pixel. It is common in the literature to multiply
the cost function by a factor of minus two

k̂ = arg min
k

{
−2 ln p

(
g|θ̂(k), k

)
+ 2C(k)

}
. (19)

For each k = 3 np (e.g., np = 1, 2, or 3), the estimated am-
plitudes, phases, and elevations of the np scatterers are used to
synthesize an estimate of γ and to compute ‖g − R γ̂(θ̂(k))‖2,
the exponent of the likelihood function. The preferred model is
finally the one with the lowest penalized likelihood criterion
value according to (15).

There are many types of penalized likelihood criteria, such
as the Bayesian information criterion (BIC), the Akaike infor-
mation criterion (AIC), and the minimum description length
(MDL). Their basic principles are the same, and the main
difference is in the penalty term. In [30], BIC, MDL, and
AIC are discussed in detail for the purpose of determining the
number of scatterers inside an azimuth–range pixel of multipass
SAR data stack with nine acquisitions.

BIC is also called the Schwarz criterion or Schwarz informa-
tion criterion (SIC). It is so named because Gideon E. Schwarz
[31] gave a Bayesian argument for adopting it. The detailed
derivation and performance of BIC are described in [32]. If
the models are quasi-nested [33], BIC with C(k) = 0.5 k ln N ,
where N refers to the number of samples (in our case, the
number of acquisitions), is an approximation of the Bayesian
method that says that models should be compared according to
their posterior probabilities.

MDL is a formalization of Occam’s razor and tries to find
the hypotheses or combination of hypotheses that compress
the data the most [34]. The MDL was introduced by Jorma
Rissanen in 1978 [35]; it is an important concept in information
and learning theory. Without prior knowledge of the model, it
is identical to BIC with a penalty term of C(k) = 0.5 k ln N .

AIC with C(k) = k tries to minimize the expected rela-
tive distance between the fitted model and the unknown true
mechanism that generated the observed data [36]. Rejecting a
null hypothesis when it should have been accepted creates a
type I error; accepting a null hypothesis when it should have
been rejected creates a type II error. AIC effectively trades off
those two types of errors. As a result, AIC may give less weight
to simplicity than to data fit as compared to classical hypothesis
testing [37]. Therefore, when the number of samples is large,
AIC tends to underpenalize complexity.



4302 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 48, NO. 12, DECEMBER 2010

Fig. 8. Estimated elevations using (a) NLS estimation and (b) MD with SNR = 20 dB. (c) Elevation point spread function from SVD-Wiener reconstruction.
The estimation truth is a horizontal line referring to the ground and a diagonal line referring to the scatterer at variable elevation. The red lines in the plots show
±3 times the CRLB on elevation estimates for the single scatterer.

Fig. 9. Wynn hotel, Las Vegas. (Left) Optical image with viewing direction of SAR (LOS = line of sight) and (yellow) two iso-elevation lines. (Right) Mean
TerraSAR-X intensity image with (red) analysis points P1 and P2.

Fig. 10. Elevation profiles at analysis points P1 (single scatterer) and P2 (two scatterers) marked in Fig. 11.
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Fig. 11. (Top) Las Vegas Convention Center (Google Earth). (Bottom)
TerraSAR-X intensity map.

AICc is the small-sample bias adjustment for AIC [38]

AICc = AIC +
2k(k + 1)
N − k − 1

. (20)

An issue with all these model selection methods is selection
bias, which cannot be easily corrected. Selection bias refers
to the fact that model criteria are particularly risky when a
selection is made from a large number of competing models.
The random fluctuation in the data will increase the scores of
some models more than others. The more models there are,
the greater is the risk that the optimal model is chosen at
random. In [36], it was emphasized that selection criteria should
not be followed blindly and that the term “selection” sug-
gests something definite, which, in fact, has not been reached.
Therefore, the selection of a criterion must be based on the
experiments for the specific situation, and it is also not possible
for model order selection algorithms to control the false-alarm
probability.

In order to choose a favorable model selection method,
different schemes are evaluated on simulated data with the
elevation aperture sampling of Fig. 2. The decorrelation effect
is simulated by adding Gaussian noise with a certain SNR.
Phase noise due to unmodeled deformation and atmospheric
effects are simulated by adding a uniformly distributed phase
on [−0.5π, 0.5π). The simulated “truth” is two scatterers at
elevations of −20 and 40 m with reflectivities of 1 and 0.8,
respectively. The distance between the two scatterers is hence
1.5 elevation resolution cells. The most important characteristic
for evaluating the performance of the model selection criteria is
the detection rate that refers here to the probability of correctly
detecting the number of scatterers. A Monte Carlo simulation
with 1000 realizations per SNR value was performed to eval-
uate the detection rates of different schemes. The probability
of correctly detecting two scatterers for various SNRs is shown
in Fig. 7.

In this example, the number of scatterers is chosen from
three hypotheses, namely, one, two, or three scatterers. Since
the complexity of the model only depends on k, the MDL is
identical to BIC in our application, and they give the same
results. All the model selection schemes appear to have similar
performance. At a typical SNR of 3 dB, a threshold that is also
often used for persistent scatterer identification, the probability
of correctly detecting the number of scatterers is at least 60%.
Overall, the MDL and BIC provide the best performance in our
case and are used in the following experiments.

VI. PARAMETRIC ESTIMATION

With prior knowledge np, the parameters associated with
individual scatterers, such as elevation, reflectivity, and LOS
velocity (for D-TomoSAR only), can be estimated by ei-
ther implementing a parametric estimation method, such as
NLS, or simply detecting np peaks of the nonparametric
estimates.

For the following, let us consider that the elevation reflec-
tivity profile is composed of np delta functions of complex
amplitudes xi

γ(s) =
np∑
i=1

xi · δ(s − si). (21)

NLS: The noise-corrupted SAR observations of the np scat-
terers is according to the observation equation (4) [39]

gn =
np∑
i=1

xi exp(j2πξnsi) + υn, n = 1, . . . , N (22)

where υn is the observation noise. As both the complex ampli-
tudes xi and the elevations si of the individual np scatterers
are unknown, the spectrum estimation problem is nonlinear.
Although the signal model is nonlinear, it is at least linear in
the amplitude

g = H(s)x + u (23)
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Fig. 12. (Top) TerraSAR-X radar intensity image of the Las Vegas Convention Center. The green dot is the reference point, and the blue lines are the positions
of the respective slices. (Bottom) The estimated reflectivity is shown in the azimuth–elevation plane [horizontal: azimuth; vertical: elevation, converted to height
(in meters)].
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where the matrix H(s) depends on the unknown elevations
of the scatterers. As this model is linear in amplitude and
nonlinear in elevation, the least squares error may be mini-
mized with respect to x in a closed analytic form and thus be
reduced to a function of elevations only, which means that an
np-dimensional search is needed (for D-TomoSAR, an addi-
tional search for velocity is required). Since the object function
[40] x, which minimizes

J(s,x) = (g − H(s)x)T (g − H(s)x) (24)

for a given s, is

x̂ =
(
HT(s)H(s)

)−1
HT(s)g (25)

the resulting error is

J(s, x̂) = gT
(
I − H(s)

(
HT(s)H(s)

)−1
HT(s)

)
g. (26)

Fig. 13. (Top) Reconstructed reflectivity slice (azimuth–elevation plane).
(Bottom) Estimated elevation (converted to height) and model selection results
(green dots: single scatterer in an azimuth–range pixel; red dots: two scatterers).

The problem now reduces to a maximization of
gTH(s)(HT(s)H(s))−1HT(s) g over npvalues of s, and
a grid search can be used. With Gaussian white noise, NLS is
identical to MLE. It is therefore theoretically the best estimator
for our application if and only if the data closely agree with the
assumed model. However, multidimensional search leads to a
large computational effort.

Maxima detection (MD): As implied by the name, MD
detects np peaks in the nonparametric estimates. It is relatively
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fast. However, it may introduce estimation bias caused by
interference between multiple scatterers, i.e., the location of
the peaks may be shifted by the sidelobes of other scatterer
responses. In addition, it has the inherent elevation resolution
limit of nonparametric spectral estimation and is therefore not
capable of separating too close objects.

Two scatterers inside one resolution cell, among which one
changes the elevation gradually from −100 to 100 m and the
other stays at zero elevation, are simulated as an example for
evaluating the performance of both methods. Fig. 8 shows the
estimated elevation of the two scatterers by NLS [Fig. 8(a)]
and MD [Fig. 8(b)] with SNR = 20 dB. The x-axis refers to
the true elevation of the shifting scatterer. The y-axis refers to
the estimated elevation. The ideal image should be two straight
lines (one horizontal and one diagonal).

The red lines in the plots indicate ±3 times the CRLB
σŝ on elevation estimates for the single-scatterer case [(3)].
Fig. 8(c) shows the elevation PRF with elevation aperture
sampling shown in Fig. 2. As expected, NLS gives the better
performance. When the distance between the two scatterers is
large enough (low interference effect), NLS is able to locate
the scatterers quite well with localization accuracy within the
3σŝ band. Correspondingly, MD of nonparametric estimates is
limited by the elevation resolution. Moreover, even with the two
scatterers further apart than the resolution cell size, MD suffers
from the interference of the scatterers [Fig. 8(b)]. The elevation
estimate of one scatterer is systematically biased by the side-
lobes of the other and vice versa, even though the SNR is high.

VII. EXPERIMENTAL RESULTS

A. Las Vegas, Wynn Hotel

The Las Vegas Wynn hotel has been chosen as a test building
to demonstrate the potentials of layover object separation since
it is very high and has strong layover effect in the SAR image.
Fig. 9 (left) shows the Wynn hotel in Las Vegas with a height
close to 200 m, corresponding to an elevation range of 380 m.
The right image in Fig. 9 is the corresponding TerraSAR-X
intensity image.

Pixels containing multiple scatterers are mainly located at the
intersection of the bright texture of the building with structures
near the ground. To exemplify the potential of the TomoSAR
method, the two pixels marked by red stars have been selected
and will be analyzed in the following. As P1 is located outside
the region of the high-rise building, it is expected that it only
contains a single scatterer situated near the ground. P2 is
located at the intersection area; we expect two scatterers inside
this pixel, among them one from the ground and one from
the building facade. The corresponding reflectivity estimates
for those two pixels are shown in the right image of Fig. 10.
In this example, we can see the potential of the tomographic
approach with TerraSAR-X to separate multiple scatterers in
layover areas at a VHR.

B. Las Vegas Convention Center

The Las Vegas Convention Center is a very interesting test
building for 3-D focusing for two reasons. First, it is very big
and has a regular shape. Therefore, we are able to check the
plausibility of the results. Second, it has a height of about 20 m,

Fig. 14. (Top) Digital surface model of the Las Vegas convention center
generated from D-TomoSAR (in meters) (black cross: reference point) and
(Bottom) the estimated linear deformation velocity w.r.t. the reference point
(in centimeters per year).

the critical distinguishable distance between two scatterers (one
from the ground and the other from the building) for our
elevation aperture size. The presence of two scatterers within
azimuth–range pixels is expected in layover areas. The top
image in Fig. 11 shows the convention center visualized in
Google Earth. The bottom image is the TerraSAR-X intensity
map of the area. After preprocessing, we choose a reference
pixel according to [41], which most likely has only a single
scatterer inside.

SVD-Wiener, as described in Section IV, is applied to
each azimuth–range pixel in the area of interest. Fig. 12
shows an example of the reconstructed reflectivity map of the
azimuth–elevation slices with fixed range coordinates marked
by bright blue lines. The green dot on the TS-X intensity
map is the selected reference that is located on the roof of
the convention center. The lower images of Fig. 12 show the
reconstructed reflectivity slice (bright means high reflectivity;
the y-axis refers to the elevation relative to the reference
point). The structure of the building can be recognized, and
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Fig. 15. World at X-band: Tomographic surface reconstruction overlaid by the 3-D reflectivity map.

the reflectivity difference between individual parts can be seen.
For instance, from the left slice, it is obvious that the returns
from the roof of the building are generally stronger than the
returns from the ground and the building has a different height
for individual parts (which is not visible in the Google Earth
building model). At the range position of the slice on the right-
hand side, the lower part of the building marked by the red block
(left part in the reflectivity slice) is a layover area. From the
Google Earth image, we can see that there is a small triangular-
shaped plaza on the ground made of the same material as
the building. Thereby, multiple scatterers are expected. When
we check the estimated reflectivity slice, multiple scatterers
appear, even though the distance between two scatterers (one
from the building marked with a blue line, and the other
from the small structures on the ground marked with a yellow
line) is approximately at the minimal distinguishable distance.
This demonstrates the multiple-scatterer separation potential of
TomoSAR and the stability of our algorithm.

After model selection, the number of scatterers inside every
azimuth–range pixel is retrieved to provide the required prior
knowledge for parameter estimation. The top panel of Fig. 13
shows the reflectivity slice reconstructed by the estimated
elevation and reflectivity based on the nonparametric estimates
on the right image in Fig. 12. The bottom plot in Fig. 13
reveals the estimated elevations of azimuth–range pixels with
good signal. The green dots represent the elevation of a single
scatterer in an azimuth–range pixel. The red dots represent
the elevation estimates of the detected double scatterers. These
results seem plausible. The deformation term is ignored for
these results.

From the parametric elevation estimates, a digital surface
model of the building can be reconstructed. Even ambiguities
in layover areas are resolved. However, deformation has not
been considered so far. Therefore, when the deformation signal
is strong, the reflectivity reconstruction in the elevation will be
distorted, and the elevation estimates degrade. Therefore, we
implement D-TomoSAR to our data stack.

Fig. 14 shows the surface model generated from the ele-
vation estimates (converted to height relative to the reference
point). The full structure of the convention center has been
captured at a very detailed level. Other than the building, more
details, such as the roads surrounding the convention center,
as well as two bridges above the roads that have weak but
correlated returns, are well resolved. Compared to classical
interferometric surface reconstruction, TomoSAR overcomes
layover and phase-unwrapping problems. The height estimates
are very precise compared to the 40.5-m elevation resolution
due to the high SNR of TerraSAR-X data. There are still some
distortions in the middle of the image where a flat roof surface
is expected. It may be due to the incorrect linear deformation
model assumption. Since the deformation is presumably caused
by thermal dilation, it rather follows a periodic seasonal model.
The bottom image of Fig. 14 shows the estimated deformation
velocity relative to the reference point. Some areas exhibit a
significant uplift of up to 3 cm/year.

Fig. 15 shows the final surface model with deformation
correction overlaid by the reflectivity map. This, for the first
time, visualizes in detail how the convention center would look
like from the position of TerraSAR-X if our eyes could see
X-band radiation. This may lead to a better understanding of
the nature of scattering. For instance, an overview about the
multiple bounce can be acquired by looking at the very bright
structure in Fig. 15. Also, the very bright individual scatterers
that behave as corner reflectors can be precisely located. This
may help in finding natural corner reflectors.

VIII. CONCLUSION

This paper has demonstrated the potential of the new class
of VHR spaceborne SAR systems, like TerraSAR-X and
COSMO-Skymed, for TomoSAR in urban environment. A
stack of TerraSAR-X high-resolution spotlight data over the
city of Las Vegas has been used. Compared to the medium res-
olution SAR systems available so far, the information content
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and level of detail have increased dramatically. A full tomo-
graphic high-resolution reconstruction of a building complex
has been presented.

Depending on the application, nonparametric or parametric
estimation methods are preferred. Examples for both classes
of estimators have been demonstrated and compared to the
Cramér–Rao bound. Motivated by the ill-determinedness of the
problem, a MAP estimator has been proposed, which leads to a
Wiener-type regularization for the nonparametric SVD method
for both 3-D and 4-D (differential) tomographic reconstruc-
tions. Model selection, i.e., the estimation of the number of
discrete scatterers in a resolution cell, has been shown to be
a necessary prerequisite for parametric estimation.

One of the major error sources is unmodeled, e.g., non-
linear, motion. These phase errors are able to deteriorate the
elevation estimates. With the launch of TanDEM-X, single-
pass (motion-free) data pairs will be available. Mixed data
stacks from TerraSAR-X and TanDEM-X will be an attractive
option for mitigating motion errors and for retrieving profiles
of temporarily decorrelated scatterers.
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