elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Kontakt | English
Schriftgröße: [-] Text [+]

Computational Modelling of Transonic Aerodynamic Flows Using Near-Wall, Reynolds Stress Transport Models

Jakirlic, Suad und Eisfeld, Bernhard und Jester-Zürker, Roland und Tropea, Cameron und Kroll, Norbert (2009) Computational Modelling of Transonic Aerodynamic Flows Using Near-Wall, Reynolds Stress Transport Models. In: MEGADESIGN and MegaOpt - German Initiatives for Aerodynamic Simulation and Optimization in Aircraft Design Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 107. Springer. Seiten 73-92. ISBN 978-3-642-04092-4. ISSN 1612-2909

Dieses Archiv kann nicht den gesamten Text zur Verfügung stellen.

Kurzfassung

The present work reports on the further development of the Hanjalic-Jakirlic (1998) near-wall, second-moment closure (SMC) model in the RANS (Reynolds-Averaged Navier-Stokes) framework, updated to account for a wall-normal free, non-linear version of the pressure-strain term model, its implementation into the DLR-FLOWer code and its validation in computing some (compressible) transonic flow configurations. Furthermore, the wall boundary condition is based on the asymptotic behaviour of the Taylor microscale lambda and its exact relationship to the dissipation rate epsilon in the immediate wall vicinity. In addition, the calculations were performed using the DLR-FLOWer's default Reynolds stress transport model (Eisfeld, 2006), representing a numerically robust combination of the Launder-Reece-Rodi (1975) model resolving the near-wall layer with the Speziale-Sarkar-Gatski (1991) model being employed in the outer region. The flow geometries considered in this work include the transonic RAE 2822 profiles (cases 9 and 10), the ONERA M6 wing and the DLR-ALVAST wing-body configuration. The model results are analysed and discussed in conjunction with available experimental databases and the results of two widely used eddy-viscosity-based models, the one-equation Spalart-Allmaras model (1994) and the two-equation k-omega model of Wilcox (1988). The SMC predictions show encouraging results with respect to the shock position, shock-affected flow structure and the strength of the wing-tip vortex.

Dokumentart:Beitrag in einem Lehr- oder Fachbuch
Titel:Computational Modelling of Transonic Aerodynamic Flows Using Near-Wall, Reynolds Stress Transport Models
Autoren:
AutorenInstitution oder E-Mail-Adresse der Autoren
Jakirlic, Suads.jakirlic@sla.tu-darmstadt.de
Eisfeld, Bernhardbernhard.eisfeld@dlr.de
Jester-Zürker, RolandTU Darmstadt
Tropea, CameronTU Darmstadt
Kroll, Norbertnorbert.kroll@dlr.de
Datum:2009
Erschienen in:MEGADESIGN and MegaOpt - German Initiatives for Aerodynamic Simulation and Optimization in Aircraft Design
Referierte Publikation:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Band:107
Seitenbereich:Seiten 73-92
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der Herausgeber
Kroll, Norbertnorbert.kroll@dlr.de
Schwamborn, Dieterdieter.schwamborn@dlr.de
Becker, Klausklaus.becker@airbus.com
Rieger, Herbertherbert.rieger@eads.com
Thiele, Frankthiele@pi.tu-berlin.de
Verlag:Springer
Name der Reihe:Notes on Numerical Fluid Mechanics and Multidisciplinary Design
ISSN:1612-2909
ISBN:978-3-642-04092-4
Status:veröffentlicht
Stichwörter:Reynolds stress models, transonic flow
HGF - Forschungsbereich:Verkehr und Weltraum (alt)
HGF - Programm:Luftfahrt
HGF - Programmthema:Starrflügler
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AR - Starrflüglerforschung
DLR - Teilgebiet (Projekt, Vorhaben):L - Konzepte & Integration
Standort: Braunschweig
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik > CASE
Hinterlegt von: Dr.-Ing. Bernhard Eisfeld
Hinterlegt am:12 Nov 2009 10:51
Letzte Änderung:12 Nov 2009 10:51

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Copyright © 2008-2013 Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.