

Theory and Application of Porous Electrodes in Fuel Cell Characterization

Dr. Norbert Wagner DLR, Institut für Technische Thermodynamik, Stuttgart

Kronach Impedance Days 2009 "Hermann Göhr" Kloster Banz, May, 27th – 29th, 2009

Presentation outline

- → Introduction
 - → Examples of porous (technical) electrodes
- → Theory and models of porous electrodes
 - ✓ Impedance models
- → Application of Göhr's porous electrode model
 - → EIS measured at PEFC
 - EIS measured during oxygen reduction on silver in alkaline solution

→ Outlook

✓ Experimental set up for EIS applied for stack measurements

Why porous electrodes?

Enlargement of active electrode surface
Lowering of overvoltage at same current input (electrolyzer) or output (fuel cell)
Increasing of power density (galvanic cells)
Increasing of storage capacity (supercaps)
Lowering catalyst loading by increasing active surface

Overvoltage / mV

Butler-Volmer equation for hydrogen oxydation (HOR) and hydrogen evolution reaction (HER)

Fuel cell overvoltage and current density / voltage characteristic

Field of application of porous electrodes

Batteries and supercaps

Electrochemical Impedance Spectroscopy: Application to Fuel Cells

DLR für L

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Schematic diagram of the U-i characteristic of PEFC and Electrochemical Impedance Measurements

in der Helmholtz-Gemeinschaft

PEFC: Schematic Diagram (cross section)

States Contract Hard

SEM picture of PTFE/C powder

Multi-layer Gas Diffusion Electrodes with different porous layers

Carbon-PTFE Layer (Dry sprayed)

Ag-PTFE Layer (Rolled Layer)

Brief Overview of Porous electrode models and Applications

Authors	Reference	Model and system
JP Candy, P Fouilloux, M. Keddam, H.	Electrochim. Acta, 26(1981) 1029	Ni in alkaline solution
Takenouti		
R. De Levie	Electrochim. Acta, 8(1963) 751	Transmission line model,
J.S. Newman and C.W. Tobias	J. Electrochem. Soc., 109(1962) 1183	Steady-state
J. Giner, C. Hunter	J. Electrochem. Soc., 116(1969) 1124	Flooded-agglomerate model, Pt-GDE, OCR in
		alkaline solution
K. Mund, F.v. Sturm	Electrochim. Acta, 20(1975) 463	HOR on Ni in alkaline solution
S. Sunde,	Electrochim. Acta, 42(1997) 2637	Composites, SOFC
P. Björnbom	Electrochim. Acta, 32(1987) 115	Steady state model
R. Holze, W. Vielstich	J. Electrochem. Soc., 131(1984) 2298	OCR in alkaline solution
T.E. Springer, I.D. Raistrick	J. Electrochem. Soc., 136(1989) 1594	Flooded-agglomerate and thin film model,
		differential element of a pore wall
H. Göhr	Poster ISE Erlangen, 1983	Homogeneous porous model, Pb in sulfphuric
		acid
G. Paasch, K. Micka, P. Gersdorf	Electrochim. Acta, 38(1993) 2653	Macrohomogeneous porous electrode model
W. Scheider	J. Phys. Chem., 79(1975) 127	Model with pore branching
S. Srinivasan, H. D. Hurwitz, J. O'M Bockris	J. Chem. Phys., 46(1967) 3108	Thin film model
M. Kramer, M. Tomkiewicz	J. Electrochem. Soc. 131(1984)	Stochastic approach with interpenetrating
		network
A. Winsel, E. Bashtavelova	J. Power Sources, 73(1998) 242	Agglomerate-of-spheres model
M. Tomkiewicz, B. Aurian-Blajeni	J. Electrochem. Soc. 135(1988) 2743	True effective medium approach
H. Keiser, K.D. Beccu, M.A. Gutjahr	Electrochim. Acta, 21(1976) 539	Various geometries of single pore, Ni-GDE

Simple pore model of interface charging RC-transmission line of a flooded pore

R = electrolyte resistance inside the pore per unit length C = interface capacitance per unit length

$$Z(i\omega) = \sqrt{\frac{R}{i\omega C}} \coth \sqrt{i\omega RC}$$

Nyqusit representation of Impedance of RCtransmission line, model of a flooded pore

L = pore lenght

Simple pore model with faradaic processes in pores RC-transmission line of a flooded pore

r = electrolyte resistance inside the pore per unit length

- c = interface capacitance per unit length
- r_{ct} = interface charge transfer resistance per unit lenght (Faraday impedance y_2)

Nyqusit representation of porous electrode impedance with faradaic impedance element

$$r = 3 \Omega$$

$$c = 500 \text{ mF}$$

$$r_{ct} = 1.5 \Omega$$

Generalization of RC-transmission line of a flooded pore

$$Z = \frac{\frac{(z_1L)}{(y_2L)}\frac{1}{Z_t} + \sqrt{\frac{(z_1L)}{(y_2L)}} \coth\sqrt{(z_1L) \cdot (y_2L)}}{1 + \sqrt{\frac{(z_1L)}{(y_2L)}}\frac{1}{Z_t} \coth\sqrt{(z_1L) \cdot (y_2L)}}$$

Thin-film model of a porous electrode

Thin-film model and agglomerate plus thin-film model of a porous electrode

I.D. Raistrick, *Electrochim. Acta*, **35**(1990) 1579

Theory of Agglomerated Electrodes

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft M. Eikerling, A.A. Kornyshev, E. Lust, J. Electrochem. Soc., 152 (2005) E24

S.H. Liu, *Phys. Rev. Letters*, **55**(1985) 5289 T.Kaplan, L.J.Gray, and S.H.Liu, *Phys. Rev.* **B 35** (1987) 5379

Cylindrical homogeneous porous electrode model (H. Göhr) I

H. Göhr in Electrochemical Applications/97, www.zahner.de

Cylindrical homogeneous porous electrode model (H. Göhr) II

Porous electrode model with faradaic impedance

Simulation of Impedance Spectra using Porous Electrode Model

in der Helmholtz-Gemeinschaft

Electrochemical Impedance Spectroscopy: Experimental Set-up

Bode diagram of measured EIS at different cell voltages (current densities) I

Bode diagram of measured EIS at different cell voltages (current densities) II

Bode diagram of measured EIS at different cell voltages (current densities) III

Common Equivalent Circuit for Fuel Cells

Common Equivalent Circuit for Fuel Cells

Common Equivalent Circuit for Fuel Cells

EIS at Polymer Fuel Cells (PEFC):

Common equivalent circuit and boundary case

Equivalent circuit of the PEFC: anode and cathode simulated without pores, without diffusion (valid for example at lower current densities)

Bode diagramm of the EIS, measured at the PEFC at 80°C, symmetrical gas supply of the cell

EIS at Polymer Fuel Cells (PEFC):

Contributions to the cell impedance at different current densities

in der Helmholtz-Gemeinschaft

Evaluation of the U-i characteristics from EIS

◆ measured curve: U_n = f(i_n)
 calculated curve: U_n = i_nR_n (without integration)
 △ calculated curve using method II: U_n = a_ni²_n+b_ni_n+c_n
 x calculated curve using method I: U_n = a_ni_n+b_n

$$R_{n} = \frac{\partial U}{\partial I} \Big|_{n}$$

Integration method I:

$$U_{n} = U_{n-1} - \frac{1}{2} \left(\frac{\partial U}{\partial I} \Big|_{n-1} + \frac{\partial U}{\partial I} \Big|_{n} \right) * \left(I_{n} - I_{n-1} \right)$$

Integration method II:

$$U_{n} = a_{n}I_{n}^{2} + b_{n}I_{n} + c_{n} \text{ with}$$

$$a_{n} = \frac{R_{n+1} - R_{n}}{2(I_{n+1} - I_{n})}$$

$$b_{n} = R_{n+1} - 2a_{n}I_{n+1}$$

$$c_{n} = U_{n-1} - a_{n}I_{n-1}^{2} - b_{n}I_{n-1}$$

EIS at Polymer Fuel Cells (PEFC):

Contributions to the overal U-i characteristic determined by EIS

Evaluation of EIS with the porous electrode model

Porous electrode resistance $(R_{p, a})$, charge transfer resistance $(R_{ct, a})$ and electrolyte resistance $(R_{por, a})$ in the pore of the anode at different current densities

Evaluation of EIS with the porous electrode model i-V characteristic and current dependency of pore electrolyte resistance of the anode and cathode

Impedance Measurements during Oxygen Reduction Reaction (ORR) in 10 N NaOH, on Silver Electrodes at Different Current Densities

Outlook

- ✓ Further improvement of porous electrode models
- ✓ Combination and extension of existent and new models
- ✓ Application of EiS to segmented cells
- Experimental validation of models using
 - ✓ PEFC and DMFC electrodes with different porous structure
 - Gas Diffusion Electrodes (GDE) for Oxygen Consumption Reaction (OCR) in alkaline solution using different gas compositions

