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Design and Principle of a Planar SOFC
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SOFC Metal-Supported Cell
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Plasma Spray Laboratory at DLR Stuttgart



Experimental Setup
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disintegration of liquid 
stream in gas jet

Atomization

Problems:

small dimensions
extremely high temperature

precursor
gas

atomizing gas

z-adjustable
RF plasma torch

peristaltic
pump

liquid
precursor

injection probe
central gas
sheath gas

500 KHz 
generator

plasma

coating

x-y-movable
substrate

vacuum
pump

window

vacuum
reactor



Applied Precursor Solutions and Desired Synthesis Products

Synthesis product Precursor Concentration

A La0.9Sr0.1MnO3 (LSM)
La(NO3)3 • 6 H2O
Sr(NO3)2
Mn(NO3)2 • 4 H2O

0,9 M
0,1 M
1,0 M

B La0.5Sr0.5MnO3 (LSM)
La(NO3)3 • 6 H2O
Sr(NO3)2
Mn(NO3)2 • 4 H2O

0,5 M
0,5 M
1,0 M

C La0.65Sr0.3MnO3 (ULSM)
La(NO3)3 • 6 H2O
Sr(NO3)2
Mn(NO3)2 • 4 H2O

0,65 M
0,3 M
1,0 M

D Pr0.65Sr0.3MnO3 (UPSM)
Pr(NO3)3 • 5 H2O
Sr(NO3)2
Mn(NO3)2 • 4 H2O

0,65 M
0,3 M
1,0 M

E La0.8Sr0.2FeO3 (LSF)
La(NO3)3 • 6 H2O
Sr(NO3)2
Fe(NO3)3 • 9 H2O

0,8 M
0,2 M
1,0 M

F La0.8Sr0.2(Co,Fe)O3 (LSCF)

La(NO3)3 • 6 H2O
Sr(NO3)2
Co(NO3)2 • 6 H2O
Fe(NO3)3 • 9 H2O

0,8 M
0,2 M
0,5 M
0,5 M

G La0.58Sr0.4Fe0.8Co0.2O3
(LSFC)

La(NO3)3 • 6 H2O
Sr(NO3)2
Fe(NO3)3 • 9 H2O
Co(NO3)2 • 6 H2O

0,58 M
0,4 M
0,8 M
0,2 M

H Pr0.58Sr0.4Fe0.8Co0.2O3
(PSFC)

Pr(NO3)3 • 5 H2O
Sr(NO3)2
Fe(NO3)3 • 9 H2O
Co(NO3)2 • 6 H2O

0,58 M
0,4 M
0,8 M
0,2 M



X-Ray Diffraction Patterns of La0.9Sr0.1MnO3
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Key parameter:

Mn loss depends on
radial distance from
plasma jet axis 

Top: 
TPCVD coating
from central part 
of plasma jet

Bottom: 
TPCVD coating
from cooler margin

stationary substrate



X-Ray Diffraction Patterns of Pr0.58Sr0.4Fe0.8Co0.2O3
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Microstructure of TPCVD Perovskite Coatings



Functional Principle of DC Plasma
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Vacuum Plasma Spraying of SOFC Cells



NiO+YSZ Powder

Co-precipitation and Spray-Drying

22 vol%NiO + YSZ

Agglomerated 

Agglomerate size: -50+10 µm

Primary particle size: 20-80 nm

Feedstock Powder for DC Plasma Spraying



As-Sprayed Anode Structure and XRD
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Permeability of Anode
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Conductivity of Nano-Anode

Conductivity of nano and conventional anode were comparable for first 30 to 40 hrs

Conductivity of nano anode increased for extended period of test time
- possible cause could be Ni particles phase I sintering 

Test Atmosphere

2 slm Ar+5 vol% H2



Electrochemical Testing
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Reference cell with conventional anode (□); Cell with nanostructured anode after 100 h (Δ) and after 1500 h (◊) of operation 
800°C - Cell area 12.6 cm² - Gases: 0.5 slm H2+0.5 slm N2/2.0 slm air).

• Cells containing a nano anode show 34% higher power density
• Anodic polarization at OCV of nano anode was 0.42 Ωcm² instead of 0.72  Ωcm²

for conventional anode       
• 3.33%/kh degradation rate for cells with nano anode is comparable to cells having 

conventional anodes – No evidence of additional degradation due to nanomaterials



Nano Anode Structure after SOFC Operation

2 µm 

 

2 µm 

After 100 h of operation After 1500 h of operation

Limited grain growth and sintering 
Particle size: 60 to 220 nm after 100 h and 95 to 390 nm after 1500 h
Expected mechanisms are phase I or gas-phase sintering



Suspension and Solution Precursor Plasma Spraying

Suspension Plasma Spraying
Injection of nano-particles in plasma by 
suspending them in a liquid.

Solution Precursor Plasma Spraying
In-flight nano-particles synthesis by 
chemical reaction of metal salt precursors in 
plasma.



Suspension Plasma Spraying

YSZ 40 nm particles and development of stable 
suspension using Zeta potential

Development of stable suspensions
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Conclusion

Nanostructured cathodes and anodes for SOFC were prepared by 
applying plasma deposition processes (RF and DC plasma)
Two approaches were applied:
- Introduction of pre-synthesized nanoparticles as agglomerates or

suspensions into the plasma
- In-situ synthesis of nanomaterials and deposits from solutions of  

metal salts
TPCVD cathodes initially exhibited undesired secondary phases which
was overcome by adjusting the chemical composition of the precursor
material. The microstructure was columnar type with very high open
porosity
For 1500 hours of operation only limited growth of nanosized particles
was observed in SOFC anodes
Further improvement of the microstructure of anodes is in progress
using DC plasma suspension and solution precursor plasma spraying





Synthesis from Liquid Precursors in an RF Plasma

Why liquid precursors?
cost reduction

continuous feeding of material

homogeneous distribution in the plasma

synthesis of thermally instable materials

simple adjustment of stoichiometry

Why r.f. plasma?

large volume, low jet velocity, 
i.e. more complete synthesis

axial material injection

electrodeless, i.e. oxidizing
conditions possible
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X-Ray Diffraction Patterns of La0.58Sr0.4Fe0.8Co0.2O3
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0.5 slpm H2 + 0.5 slpm N2

2,0 slpm Air

Gas volume flow
anode
cathode

12.57 cm2Effective area
800°COperating temperature

Air

H2 + N2

1  SOFC
2  Gold sealing
3  Platinum net
4  Glass sealing
5  Housing
6  Weight

Electrochemical Testing of Full Cells


