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We report an investigation of temperature profiles in turbulent Rayleigh–Bénard
convection of water based on direct numerical simulations (DNS) for a cylindrical cell
with unit aspect ratio for the same Prandtl number Pr and similar Rayleigh numbers
Ra as used in recent high-precision measurements by Funfschilling et al. (J. Fluid
Mech., vol. 536, 2005, p. 145). The Nusselt numbers Nu computed for Pr = 4.38 and
Ra = 108, 3 × 108, 5 × 108, 8 × 108 and 109 are found to be in excellent agreement with
the experimental data corrected for finite thermal conductivity of the walls. Based on
this successful validation of the numerical approach, the DNS data are used to extract
vertical profiles of the mean temperature. We find that near the heating and cooling
plates the non-dimensional temperature profiles Θ(y) (where y is the non-dimensional
vertical coordinate), obey neither a logarithmic nor a power law. Moreover, we
demonstrate that the Prandtl–Blasius boundary layer theory cannot predict the shape
of the temperature profile with an error less than 7.9 % within the thermal boundary
layers (TBLs). We further show that the profiles can be approximated by a universal
stretched exponential of the form Θ(y) ≈ 1 − exp(−y − 0.5y2) with an absolute error
less than 1.1 % within the TBLs and 5.5 % in the whole Rayleigh cell. Finally, we
provide more accurate analytical approximations of the profiles involving higher order
polynomials in the approximation.

1. Introduction
In the past decades Rayleigh–Bénard convection (RBC) has been investigated

intensively in many theoretical and experimental studies (for reviews we refer to
Siggia 1994; Bodenschatz, Pesch & Ahlers 2000; Kadanoff 2001; Ahlers, Grossmann &
Lohse 2009), as well as in numerous numerical works such as Kerr (1996), Verzicco &
Camussi (2003), Amati et al. (2005), Calzavarini et al. (2005), Hartlep, Tilgner & Busse
(2005), Kenjereš & Hanjalić (2006), Sergent, Joubert & Le Quéré (2006), Shishkina &
Wagner (2007), Shishkina & Wagner (2008), van Reeuwikj, Jonker & Hanjalić
(2008a, b), Emran & Schumacher (2008) and Kaczorowski & Wagner (2009). In spite
of significant progress achieved in understanding of the nature of RBC, several
important questions are still open. One of them is whether the vertical profiles of
the mean temperature in turbulent RBC can be described by simple and universal
analytical expressions.
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Several works (Tilgner, Belmonte & Libchaber 1993; Lui & Xia 1998; Hölling &
Herwig 2006; du Puits et al 2007) were devoted to the investigation of the temperature
profiles in turbulent RBC. In certain subregions of the thermal boundary layers
(TBLs), the profiles were shown to follow a power law scaling (du Puits et al
2007) or a logarithmic dependence (Hölling & Herwig 2006). However, no universal
approximations which represent the temperature distributions in the vertical direction
in the whole region of interest, namely, from the heating or cooling plate up to the
central plane, or at least within the TBL alone, were found so far. In the present
work we address the question to what extent the temperature profiles in turbulent
convection of water have a simple and universal shape. The work is based on our
direct numerical simulations (DNS) of turbulent RBC for Pr = 4.38 and Ra up to
109, which are similar to those considered in recent accurate measurements in water
by Funfschilling et al. (2005).

The paper is organized as follows. Section 2 is devoted to the governing equations
and some details on the DNS. In § 3 we compare our numerically computed Nu
with those obtained in the measurements, in order to validate the DNS data. The
temperature profiles in the vertical direction are analysed and approximated in § 4.
Section 5 summarizes our conclusions.

2. Governing equations and numerical method
We consider RBC of water in a cylindrical cell with equal height H and diameter

D, i.e. with aspect ratio Γ =D/H = 1. The system of the governing momentum,
energy and continuity equations for the non-dimensional velocity u, temperature T

and pressure p in the framework of the Boussinesq approximation reads

∂u/∂t + u · ∇u + ∇p = Ra−1/2Pr1/2�u + T ez,

∂T /∂t + u · ∇T = Ra−1/2Pr−1/2�T,

∇ · u = 0. (2.1)

The equations are supplemented by the boundary conditions T = 0.5 at the heating
plate (z = 0, 0 � r � 0.5), T = − 0.5 at the cooling plate (z = 1, 0 � r � 0.5), ∂T /∂r = 0
at the lateral wall (r = 0.5, 0 � z � 1) as well as the no-slip condition u = 0 at
all boundaries. The equations have been made non-dimensional by using H ,
(αgH (TH − TC))1/2, H (αgH (TH − TC))−1/2, and TH − TC as units of length, velocity,
time and temperature, respectively. The Rayleigh and Prandtl numbers are defined as
Ra = αgH 3(TH − TC)/(νκ) and Pr = ν/κ , respectively, where α is the isobaric thermal
expansion coefficient, g the acceleration of gravity, ν the kinematic viscosity, κ the
thermal diffusivity, TH the temperature of the heating plate and TC the temperature
of the cooling plate. Cylindrical coordinates (r, φ, z) are used.

We perform DNS of turbulent RBC for Pr = 4.38 which is identical to that in
the experiments of Funfschilling et al. (2005). We consider five Rayleigh numbers,
namely Ra = 108, 3 × 108, 5 × 108, 8 × 108 and 109, which are in the same range
as the mentioned experiments. For each simulation we compute the time-averaged
Nusselt number Nu , the horizontally averaged profiles of the temperature T (z) and
of the r.m.s. temperature fluctuations T rms(z). Here the overbar denotes time- and
area-averaging over a horizontal plane at a distance z from the bottom plate. The
simulations were performed using a computational code based on a fourth order
accurate finite volume method for solving the system (2.1) in cylindrical coordinates
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Figure 1. Snapshots of the temperature fields in a horizontal cross-section at distance z =10−2

from the bottom plate as obtained in the DNS of turbulent RBC in a cylindrical container
with the aspect ratio Γ = 1 for Pr = 4.38 and (a) Ra = 108, (b) Ra = 3 × 108 and (c) Ra = 109.
The corresponding TBL thicknesses are (a) 1.5 × 10−2, (b) 1.1 × 10−2 and (c) 7.8 × 10−3. The
same grey scale ranges from white (low temperatures) to black (high temperatures).

on staggered structured non-equidistant grids. The current version of the code is
described in Shishkina, Shishkin & Wagner (2009).

The computational mesh consists of 220 × 512 × 96 nodes in the vertical, azimuthal
and radial directions, respectively, which are distributed equidistantly in the azimuthal
direction and are clustered in the vicinity of the rigid walls to resolve viscous
and TBLs. An a posteriori analysis of the mesh resolution was conducted as in
Shishkina & Wagner (2008) and confirmed that in all discussed DNS the mesh satisfies
the spatial resolution requirements by Grötzbach (1983), both in the bulk and in the
vicinity of the rigid walls. Hence, it is fine enough to resolve all relevant turbulent
scales. Namely, in all DNS the mesh satisfies the requirement hVi

� πηVi
(Ra)Pr−3/4

on each finite volume Vi , where hVi
is the mesh width, ηVi

(Ra) = Ra−3/8Pr3/8ε−1/4
u is

the smallest Kolmogorov scale on Vi and εu is the rate of turbulent kinetic energy
dissipation.

Figure 1 illustrates the DNS data with the instantaneous temperature distributions
in a horizontal cross-section at a distance z = 10−2 from the bottom for the cases
Ra = 108, 3 × 108 and 109. These snapshots reflect sheet-like flow structures close to
the plates, which are similar to those obtained experimentally by Zhou, Sun & Xia
(2007).

3. Mean heat flux
First, we focus our attention to the Nusselt number which is a dimensionless

measure of the mean heat flux. We have deliberately chosen Pr and Ra such that
we can directly compare our Nusselt numbers to those obtained in a series of
recent high-accuracy experiments in water performed by Funfschilling et al. (2005).
In our normalization Nu = Ra1/2Pr1/2uzT − ∂T /∂z. The DNS data were collected
during τ dimensionless time units, which together with the maximum relative
variation e of the Nusselt numbers computed at different heights z ∈ [0, 1] are
given below. The following mean Nu were obtained: Nu = 32.5 (Ra = 108, τ = 64,
e = 1.7 %), Nu = 44.8 (Ra = 3 × 108, τ = 151, e = 1.3 %), Nu = 52.3 (Ra = 5 × 108,
τ = 205, e = 0.6 %), Nu =60.0 (Ra = 8 × 108, τ = 267, e = 0.9 %) and Nu = 64.2
(Ra = 109, τ = 290, e = 0.9 %).

In figure 2 the Nusselt numbers are presented as they were obtained in the
DNS together with the experimental results for the same Pr = 4.38 and the same
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Figure 2. (a) Validation of the DNS: Nusselt numbers for turbulent RBC in water (Pr = 4.38)
in cylindrical cells with the aspect ratio Γ =1 as obtained in the DNS (�), compared to
the experimental data of Funfschilling et al. (2005) for their small (D = 9.21 cm, �) and
medium (D =24.84 cm, �) cells. The experimental data have been corrected for the sidewall
conductance, according to Ahlers (2000). (b) Compensated Nusselt numbers Nu/Ra0.29 for the
same data as in (a). The vertical bars show the variation of the Nusselt numbers computed at
different distances from the bottom.
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Figure 3. (a) Temperature profiles and (b) r.m.s. temperature fluctuations in the vertical
direction near the bottom plate, averaged over horizontal plane, as obtained in the DNS of
turbulent RBC for Pr = 4.38, Γ = 1 and Ra = 108(�), 3 × 108(�), 5 × 108(�), 8 × 108(�) and
109(�).

cylindrical geometry of the container with Γ ≈ 1. The measurements were conducted
by Funfschilling et al. (2005) in their small (D = 9.21 cm) and medium (D = 24.84
cm) apparatus using water with the mean temperature Tm about 40 ◦C.

One can see that the obtained numerical data are generally in excellent agreement
with the measurements in the medium apparatus, in which the Oberbeck–Boussinesq
assumptions were fulfilled for all considered Ra . The results shown in figure 2 can
be accepted as a successful validation of the numerical code. We can now use the
numerical data to extract information that is not available in the experiments.

4. Temperature profiles
It is known from previous works that the mean temperature profiles in RBC change

dramatically in thin TBLs with a non-dimensional thickness λ=0.5/Nu , while in core
regions they are nearly independent from the vertical coordinate z. In figure 3 we show
the mean temperature and r.m.s. temperature fluctuations averaged over a horizontal
plane as functions of z. The steepening of the profiles near the bottom, depending on
Ra , is well seen in figure 3(a). With increasing Ra , the TBL thickness decreases and
the point of maximum of the r.m.s. temperature fluctuations moves towards the plate.
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Figure 4. Scaled temperature profiles Θ(y) defined by (4.1), as obtained in the DNS of
turbulent RBC for Pr = 4.38, Γ =1 and Ra = 108(�), 3 × 108(�), 5 × 108(�), 8 × 108(�) and
109(�). The slope of Θ(y) at y = 0 (· · ·) is shown as well as Prandtl–Blasius approximation
(4.5), (4.7) (− · −) and approximations (4.11) (——) and (4.9) for ω = 2 (– – –) and ω = 3
(- - -). For ω = 3 (- - -) approximation (4.9) coincides with Prandtl–Blasius approximation (4.5)
(− · −) and for ω = 2 (– – –) it is close to approximation (4.11) (——). Inset shows Θ profiles
in double-logarithmic scale. Approximation (4.11) (——) represents very precisely (with the
maximum absolute error less than 1.1 %) the profiles within the whole interval y ∈ [0, 1] which
corresponds to the TBL.

In order to compare profiles for different Ra , we consider the function

Θ(y) = 1 − 2T , with y = 2 Nu z. (4.1)

The introduction of the inner variable y takes into account that the TBL thickness
is determined by Nu . As it is seen in figure 4, the functions Θ(y) are very similar
to each other in spite of the differences in Ra , at least in the considered interval
108 � Ra � 109. Also y-dependent non-dimensional conductive heat fluxes dΘ/dy,
which are presented in figure 5(a), look very similar for different Ra . In particular,
dΘ/dy equals 90 % of its initial value for Θ = 0.37 and falls to 50 % of its initial
value for Θ = 0.67.

Such a collapse of the data for different Ra , presented in figures 4 and 5(a), was
expected, since independently from Ra the function Θ(y) must satisfy the following
requirements. At y = 0 the next three equalities are true:

Θ = 0, dΘ/dy = 1, d2Θ/dy2 = 0 for y = 0. (4.2)

(The first two follow from (4.1) and the definition of the Nusselt number, while the
last one is the energy equation at the horizontal plate.) For high values of y, i.e. in
the bulk of the cell, the function Θ(y) must satisfy

Θ → 1, dΘ/dy → 0, d2Θ/dy2 → 0 for y → ∞. (4.3)

Our objective is to find accurate approximations of Θ(y) within the TBLs (0 � y � 1)
and in the whole Rayleigh cell (0 � y � Nu).
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Figure 5. (a) dΘ/dy defined by (4.1) as obtained in the DNS of turbulent RBC for Pr = 4.38,
Γ = 1 and Ra =108(�), 3 × 108(�), 5 × 108(�), 8 × 108(�) and 109(�) and from Prandtl–Blasius
approximation (4.5), (4.7) (−·−) and approximations (4.11) (——) and (4.9) for ω = 2 (– – –) and
ω =3 (- - -). For ω =3 (- - -) approximation (4.9) coincides with Prandtl–Blasius approximation
(4.5) (− · −). (b) Longitudinal velocity profile dΨ/dy in double-logarithmic and ordinary scales
(inset) as obtained using the Prandtl–Blasius equations (4.4) and (4.6). Within the TBL
(y ∈ [0, 1]) the function dΨ/dy is almost linear in y (compare with a dashed straight line).
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Figure 6. Diagnostic functions (a) dΘ/d ln y (for logarithmic profiles) and (b) d ln Θ/d ln y
(for power-law profiles) as obtained from the DNS of RBC for Pr = 4.38, Γ = 1 and
Ra = 108(�), 3 × 108(�), 5 × 108(�), 8 × 108(�) and 109(�) and using Prandtl–Blasius
approximation (4.5), (4.7) (− · −) and approximations (4.11) (—–) and (4.9) for ω =2 (– – –)
and ω = 3 (- - -). For ω = 3 approximation (4.9) coincides with Prandtl–Blasius approximation
(− · −).

4.1. Power-law profile versus logarithmic profile

The question, whether velocity profiles in shear flows obey a power-law or a
logarithmic shape, has been intensively debated in the past (see Buschmann & Gad-
el-Hak 2003). Our DNS enable us to address the analogous issue for the temperature
profiles in RBC.

To analyse, whether Θ(y) obeys a logarithmic or a power-law (as it was obtained
in some experimental studies, e.g. by du Puits et al 2007), we evaluate the diagnostic
functions d ln Θ/d ln y and dΘ/d ln y (see e.g. Zanoun, Durst & Nagib 2003). If the
profile can be approximated by a power law of the form Θ ∼ yγ , the power-law
diagnostic function d ln Θ/d ln y must have a plateau in a certain interval of y. If
the profile obeys a logarithmic shape, i.e. Θ ∼ ln(y), dΘ/d ln y must have a certain
plateau.

In figure 6(a) the diagnostic function for logarithmic behaviour is presented as
it was evaluated from the DNS data. This function is non-monotonic and exhibits
a maximum near y = 0.65. The interval of relatively large values of dΘ/d ln y is
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not sufficiently broad to consider it as a plateau. We can therefore conclude that
for the considered Ra there is no logarithmic scaling of the profiles as it could be
expected from the boundary layer (BL) theories under assumptions that the TBLs are
turbulent. This fact is not surprising, since the Reynolds numbers within the TBLs
are small, although the flow in the bulk is turbulent.

Figure 6(b) shows that in contrast to the logarithmic diagnostic function, the power-
law diagnostic function decreases monotonically from the value 1 near the wall to zero
without any tendency for the formation of a plateau. Therefore, for the considered
parameter range, Θ(y) cannot be considered as a power-law profile either.

From the above discussion it follows that one has to seek approximations of the
function Θ(y), which are more sophisticated than simple power laws or logarithmic
dependencies.

4.2. Approximation derived from the boundary layer theories

The Reynolds numbers within the TBLs in RBC are known to be small (see e.g.
Ahlers et al. 2009), therefore we first compare the temperature profiles obtained in
the DNS with those derived from the Prandtl–Blasius BL equations (see the theory by
Grossmann & Lohse 2000 and Schlichting & Gersten 2000). According to the theory,
the similarity streamfunction Ψ (ξ ) and temperature profile Θ(ξ ) can be obtained from
the following system of ordinary differential equations:

d3Ψ/dξ 3 + 0.5 Ψ d2Ψ/dξ 2 = 0, (4.4)

d2Θ/dξ 2 + 0.5 Pr Ψ dΘ/dξ = 0, (4.5)

with respect to the similarity variable ξ = z/l, where l is a certain length scale. For
(4.4) and (4.5), one has, respectively, the following boundary conditions:

Ψ (0) = 0, dΨ/dξ (0) = 0, dΨ/dξ (∞) = 1, (4.6)

Θ(0) = 0, Θ(∞) = 1. (4.7)

We solve numerically (4.4), (4.6) and further (4.5), (4.7), using the shooting method.
In particular, for the function Θ for Pr = 4.38 at ξ = 0 we get dΘ/dξ = C−1 with
C ≈ 1.8139. Since both, the similarity variable ξ and the inner variable y, are linearly
dependent on the distance from the horizontal plate, from the last relation and
dΘ/dy = 1 at y = 0 we obtain that the variables ξ and y are related to each other as
follows:

ξ = Cy, (4.8)

(and ξ = C corresponds to the border between the TBL and the bulk). The functions
Θ(y) and dΨ/dy(y) are plotted in figures 4 and 5(b), respectively. One can see that
for Pr = 4.38 the function dΨ/dy, which is proportional to the horizontal velocity, is
almost linear within the TBL (y ∈ [0, 1]).

On the other hand, in the boundary layer theories developed by Landau & Lifshitz
(1959) and by Shraiman & Siggia (1990) (based on the measurements of Castaing
et al. 1989), the horizontal velocity is also assumed to be linear in y close to the plate.
From this, following Shraiman & Siggia (1990), one derives dΘ/dy = exp(−By3) with
a certain coefficient B .

In order to find a better fit to the mean temperature profiles, we can further
introduce a parameter ω ∈ [2, 3] in the approximation

dΘ/dy = exp(−Byω), i.e. Θ(y) =

∫ y

0

exp(−Bζω) dζ, (4.9)
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Figure 7. (a) Θ(y) defined by (4.1), as obtained in the DNS of RBC for Pr =4.38, Γ = 1
and 5 × 108 (symbols) together with the slope of Θ(y) at y = 0 (straight line), Prandtl–Blasius
approximation (4.5), (4.7) (− · −) and approximations (4.11) (—–) and (4.10) for N =1 (− · ·−)
and N = 2 (· · ·). The surface-averaged temperature profile (�) deviates from the Prandtl–Blasius
approximation (− · −) more significantly than the profile at the centreline of the cell (�).
(b) Approximation errors for Prandtl–Blasius approximation (4.5) (− · −) and approximations
(4.11) (—–) and (4.10) for N = 1 (− · ·−) and N = 2 (· · ·). Region y ∈ [0, 1] corresponds to the
TBL.

(which can be derived from a certain assumption that the horizontal velocity is
proportional to yω−2 in some part of the TBL). For any ω the constant B in (4.9)
can be computed from the requirement Θ(∞) = 1. In the case ω = 3, considered by
Shraiman & Siggia (1990) and Chilla et al (1993), we obtain B ≈ 0.71207. In the
limit case ω → 2 we obtain B = π/4, since for y → ∞ the temperature profile Θ(y) is
reduced to the Gaussian integral, namely Θ(∞) =

∫ ∞
0

exp(−(π/4)ζ 2) dζ = 1.

In figures 4–6 Prandtl–Blasius approximation (4.5), (4.7) and approximations (4.9)
for ω = 2 and ω = 3 of Θ(y) are presented together with the functions derived from
Θ(y). These approximations reflect in principle the behaviour of the temperature
profiles and the diagnostic functions (see also the distribution of the approximations
errors in figure 7(b) and table 2). Prandtl–Blasius approximation (4.5), (4.7) almost
replicates approximation (4.9) for ω = 3, since in the considered case of water in both
approximations the horizontal velocity is either shown to be or assumed to be linear
in y within the TBL.

The constant C in (4.8) depends generally on Pr and decreases to 1 with growing Pr .
Hence, with increasing Pr the border of the TBL (y = 1 or ξ = C) moves towards the
plate, i.e. to the left in figure 5(b), where dΨ/dy displays a perfectly linear behaviour.
From this one concludes that for high Pr (larger than Pr =4.38) Prandtl–Blasius
approximation (4.5), (4.7) should become even closer to approximation (4.9) with
ω = 3.

The temperature profiles computed at the centreline of the cell generally differ
from the surface-averaged profiles (see figure 7a). For all considered Ra the
surface-averaged profiles deviate from Prandtl–Blasius approximation (4.5), (4.7) and
approximations (4.9) more significantly than the centreline profiles. This might be
explained by the fact that none of the considered BL theories takes into account
the thermal plumes activity, which in the case of Γ = 1 and high Ra is known to be
weaker in the centre of the cell and stronger close to the vertical walls.

4.3. Further analytical approximation of the temperature profiles

Theoretically, one can use any full functional basis to approximate Θ(y). However,
a large number of expansion terms are usually required to obtain an approximation
which accurately represents the temperature profiles close to the plate as well as in the
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Ra

N ai 108 3 × 108 5 × 108 8 × 108 109

1 a1 0.1313 0.1262 0.1317 0.1460 0.1436
2 a1 −0.3643 −0.3645 −0.3751 −0.3950 −0.3766
2 a2 0.3842 0.3786 0.3896 0.4146 0.3974

Table 1. Best-fit coefficients in the approximation (4.10), as calculated from a least-square fit
to the numerically obtained temperature profiles Θ within the interval 0 � y � Nu .

bulk. Further, analysing the diagnostic functions (as in figure 6), one can conjecture
that Θ(y) has an exponential behaviour close to the plate. Finally, the Gaussian-like
functions (4.9) are known to be well approximated by exponential functions.

In view of the above we seek a formal approximation of Θ(y) within the interval
y ∈ [0, Nu] in the following form

Θ ≈ 1 −
(

1 +

N∑
i = 1

aiy
i+2

)
exp(−y − 0.5y2), (4.10)

which satisfies automatically the requirements (4.2) and (4.3) and the best-fit expansion
coefficients ai of which can be determined using additional information about the
spatial temperature distribution, obtained numerically or experimentally.

It is worth to note that introduction of higher order polynomials under the
exponential can give more accurate approximations within the TBL y ∈ [0, 1], but does
not lead to significantly better approximations within the whole interval y ∈ [0, Nu],
since the requirements (4.3) are not always fulfilled. Further, one can consider
an approximation Θ ≈ 1 − (1 − 0.5y2 +

∑N

i=1 biy
i+2) exp(−y), which also satisfies

automatically the requirements (4.2) and (4.3), but for a fixed N and the best-fit
coefficients ai and bi , i = 1, . . . , N , the last approximation is generally less accurate
than approximation (4.10).

If no additional information about the mean temperature distribution (except the
Nusselt number) is provided, one can put to zero all the coefficients ai = 0, i = 1, . . . , N ,
in approximation (4.10) and thus obtain the following simplest universal exponential
approximation of the mean temperature profiles

Θ ≈ 1 − exp(−y − 0.5y2). (4.11)

It is remarkable that this universal (without any degrees of freedom) approximation
(4.11) predicts very accurately the mean temperature profiles within the TBLs
(0 � y � 1) with the maxima of the absolute error less than 1.1 %. More surprising
is that this approximation represents well the profiles within the whole Rayleigh cell
(0 � y � Nu) with the absolute error not more than 5.5 % for all considered Ra . The
maximum of the absolute error of the approximation (4.11) is observed at y ≈ 2.

To obtain best-fit coefficients for higher order approximations (4.10) of Θ(y) for
y ∈ [0, Nu], we use the least squares method to fit the DNS data. The obtained
coefficients and the corresponding maxima of the absolute approximation errors are
only weakly dependent on Ra . The obtained coefficients for these approximations are
listed in table 1.

For the case Ra =5 × 108 table 2 presents the maxima of the absolute errors
for Prandtl–Blasius approximation (4.5), (4.7) and approximations (4.11) and (4.10)
with N = 1 and N = 2 degrees of freedom, over the whole region 0 � y � Nu and
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Error of approximation

Interval (4.5), (4.7) (4.11) (4.10), N = 1 (4.10), N = 2

Thermal boundary layers, y ∈ [0, 1] 7.9% 1.1% 2.8 % 0.5%
Whole Rayleigh cell, y ∈ [0, Nu] 10.3% 5.5% 4.3 % 3.4%

Table 2. Maximum absolute errors of the Prandtl–Blasius approximation (4.5), (4.7) and
approximations (4.10), (4.11) of the scaled temperature profile Θ for Ra = 5 × 108.

in particular subdomain 0 � y � 1, which corresponds to the TBL. Error spatial
distributions are also illustrated by figure 7(b).

5. Conclusions
Based on our accurate DNS data for turbulent RBC of water, Pr = 4.38, in a

cylindrical cell with unit aspect ratio for different Ra up to 109, we evaluate time-
and area-averaged temperature profiles Θ(y) (4.1), which depend on the vertical
coordinate normalized with Nu . Within the TBLs the evaluated profiles are shown to
support neither logarithmic nor power but exponential law.

It is shown that Prandtl–Blasius approximation (4.5), (4.7) of the mean temperature
profiles in water produces absolute errors about 8 % within the TBLs alone and
more than 10 % in the whole Rayleigh cell. For all considered Ra the surface-
averaged temperature profiles deviate from the Prandtl–Blasius approximation
more significantly than the profiles computed at the centreline of the cell. It
is proved that for Prandtl numbers of order 1 and higher Prandtl–Blasius
approximation (4.5), (4.7) almost coincides with approximation (4.9) for ω = 3, i.e.
Θ(y) ≈

∫ y

0
exp(−0.71207ζ 3) dζ .

For all considered Ra the simplest exponential approximation (4.11) without any
degrees of freedom predicts the mean temperature profiles already with high accuracy,
namely, with the maximum absolute errors less than 1.1 % and 5.5 % within the TBLs
and in the whole convection cell, respectively. This means that knowing only Nu , one
can predict the mean temperature distribution in the vertical direction with such
accuracy.

To approximate the mean temperature profiles even more accurately in the whole
region from the plates up to the centre of the Rayleigh cell, one can measure the mean
temperature at only one or two different distances from the plate, and thus fix the
best-fit coefficients in exponential approximation (4.10). In the case of the operating
fluid water and for considered Ra , only two different measurements are required to
represent the temperature distributions within the TBLs and in the whole cell with
an error less than 0.5 % and 3.4 %, respectively.

To check the quality of the derived universal exponential approximation (4.11) of
the mean temperature profiles for other fluids and geometries of the Rayleigh cell in
the Boussinesq case, and to approximate the profiles for different fluids and Ra in
non-Boussinesq case, further highly accurate measurements and DNS are required.
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