

Determination of Chapman and Vary-Chap variable scale-height profiles by inversion of vertical electron density profiles

C. Mayer

Deutsches Zentrum für Luft- und Raumfahrt

Institut für Kommunikation und Navigation

Overview

- ✓ Motivation
- Generalizations of Chapman Layer Functions
- ✓ Direct Determination of Variable Scale Heights
- Conclusions

Example: IRI Extension to Topside

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

U.R.S.I. Tagung 2008— Page 3/19

(α-)Chapman Layer Function

$$n(h) = N_0 \exp\left\{\frac{1}{2}\left(1 - y - \sec \chi \cdot e^{-y}\right)\right\} \quad y = \frac{h - h_0}{H}$$

Describes layers in the ionosphere caused by solar radiation

- ✓ Parameters:
 - \checkmark N_o ... maximum ionization
 - \checkmark H_0 ... scale height
 - \checkmark $h_o \dots$ height of maximum ionization
 - $\checkmark \chi \dots$ solar zenith angle

✓ It is a good functional form for modelling ionospheric layers even at night when there is no solar radiation

- ✓ Chapman layer functions are used in
 - International Reference Ionosphere model
 - Ionosonde electron density reconstructions

Generalized Chapman Layer Functions/1

- → In the following we set $\sec \chi = 1$
- ✓ We now allow the scale height H to depend on height:

$$H \rightarrow H(h)$$
 $y = \int_{h_0}^{h} \frac{\mathrm{d}h'}{H(h')}$

→ Rationale: scale height changes with temperature and composition of the ionospheric plasma $U = \frac{kT}{m_0}$

$$H = kT/mg$$

- → For $H(h)=H_0$ we recover the usual Chapman layer function
- ✓ These generalized Chapman layer functions are used in
 - ✓ IRI model extension to topside
 - ✓ Ionosonde electron density reconstruction

Generalized Chapman Layer Functions/2

1. Generalized Chapman layer function

$$n_{GC}(h) = N_0 \exp\left\{\frac{1}{2}\left(1 - y - e^{-y}\right)\right\} \qquad \qquad y = \int_{h_0}^{h} \frac{dh'}{H(h')}$$

2. Vary-Chap function

$$n_{VC}(h) = N_0 \left(\frac{H_0}{H(h)}\right)^{1/2} \exp\left\{\frac{1}{2}\left(1 - y - e^{-y}\right)\right\} \qquad y = \int_{h_0}^h \frac{dh'}{H(h')}$$

Maximum of electron density at height h_0 : $N_0 = n(h_0)$ $H_0 = H(h_0)$

Reinisch, B. W.; Nsumei, P.; Huang, X.; Bilitza, D. K. Modeling the F2 topside and plasmasphere for IRI using IMAGE/RPI and ISIS data

Given n(h) is it possible to *analytically* obtain H(h)?

Inversion

Both functions can be inverted:

- By solving for y(h) using Lambert W function technology $\widetilde{n}_{GC}^2(h) = \exp(-y - e^{-y})$ $\widetilde{n}_{GC}(h) = \frac{n_{GC}(h)}{N_0\sqrt{e}}$ [1]
- By solving the differential differential equation

$$\widetilde{n}_{vc}^{2}(h) = \frac{\mathrm{d}y}{\mathrm{d}h} \cdot \exp\left(-y - e^{-y}\right) \qquad \widetilde{n}_{vc}(h) = \frac{n_{vc}(h)}{N_{0}\sqrt{eH_{0}}} \quad [m]$$

The Lambert W Function

Implicit definition of the Lambert W function: $W(z) \cdot e^{W(z)} = z$, $z \in C$

- → has two real branches

z	W(z)
0	0
-1/e	-1
е	1

✓ derivative:

$$\frac{\mathrm{d}W(z)}{\mathrm{d}z} = \frac{1}{e^{W(z)} + z}$$

Johann Heinrich Lambert * 26. August 1728 in Mülhausen † 25. September 1777 in Berlin

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Corless et al. "On the Lambert W function" Adv. Computational Maths. 5, 329 - 359 (1996)

U.R.S.I. Tagung 2008— Page 8/19

Solution for n_{GC} / 1

- 1. Determine the maximum ionization N_0
- 2. Then compute

$$y(h) = -\ln\left(-\widetilde{n}_{GC}^{2}(h)\right) - W\left(-\widetilde{n}_{GC}^{2}(h)\right)$$

 Complication: depending on which branch of the W function we are, H(h) can become positive or negative (W is multivalued!):

$$H(h) = \left(\frac{\mathrm{d}y(h)}{\mathrm{d}h}\right)^{-1} = -\frac{\widetilde{n}_{GC}}{2\cdot\widetilde{n}_{GC}} \cdot \left(1 + W\left(-\widetilde{n}_{GC}^{2}\right)\right)$$

➔ Branch selection:

$$\frac{\mathrm{d}\widetilde{n}_{GC}(h)}{\mathrm{d}h} > 0: \text{ use branch -1}$$
$$\frac{\mathrm{d}\widetilde{n}_{GC}(h)}{\mathrm{d}h} < 0: \text{ use branch 0}$$

Solution for n_{GC} / 2

Input height function

Electron density

Solution for *n_{GC}* / 3

The solution is numerical unstable around the maximum electron density:

$$H(h_0) = -2 \cdot \frac{\widetilde{n}_{GC}(h_0)}{\widetilde{n}_{GC}'(h_0)} \left(1 + W(-\widetilde{n}_{GC}^2(h_0))\right) = -\frac{N_0}{2n''}\Big|_{h=h_0}$$

The solution is susceptible to noise, since H depends on the derivative of n(h)

Solution for n_{GC} / 4

Input height function

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

FORMOSAT-3/COSMIC *n*_{GC} reconstruction

- Input is smoothed n(h) (40 datapoint average)
- Change in scale height is clearly visible
- Noise at high altitudes

Solution for n_{VC} / 1

Solution by direct integration:

$$\widetilde{n}_{vc}^{2}(h) = \frac{\mathrm{d}}{\mathrm{d}h} \exp\left(-e^{-y}\right) \qquad \widetilde{n}_{vc} = \frac{n_{vc}(h)}{e N_{0} \sqrt{H_{0}}}$$
$$y(h) = -\ln\left\{-\ln\left(\frac{1}{e} + \int_{h_{0}}^{h} \widetilde{n}_{vc}^{2}(h') \mathrm{d}h'\right)\right\}$$

- \checkmark We have not yet determined N_o and H_o
 - → N_0 ... maximum of electron density at $n'(h_0)=0$
 - → H_0 ... there is more than one way

Solution for n_{VC} / 2

Determination of *H*₀

1. From data near the peak electron density at $h=h_0$:

$$2\frac{n_{VC}''(h_0)}{N_0} = -H_0''(h_0) - \frac{1}{H_0^2}$$

(this is imprecise and sensitive to noise)

2. From the constraint

$$\frac{n_{VC}^2(h)}{eN_0^2} = -\frac{H_0}{H(h)} \cdot \left(e^{-1} + \int_{h_0}^h \widetilde{n}_{vC}^2(h') dh'\right) \cdot \ln\left(e^{-1} + \int_{h_0}^h \widetilde{n}_{vC}^2(h') dh'\right) > 0$$

we derive the bound
$$\int_{h_0}^h \widetilde{n}_{vC}^2(h') dh' < 1 - e^{-1}$$

Solution for n_{VC} / 3

Ansatz: $\frac{1}{H_0} \int_{h_0}^{h_\infty} \frac{n^2(h')}{N_0^2} dh' = e - 1 - \varepsilon$

 $\epsilon > 0$ is determined by evaluating

$$\frac{n^2(h_{\infty})}{e N_0^2} = -\frac{H_0}{H_{\infty}} \cdot \left(e^{-1} + \int_{h_0}^{h_{\infty}} \widetilde{n}_{vc}^2(h') dh' \right) \cdot \ln \left(e^{-1} + \int_{h_0}^{h_{\infty}} \widetilde{n}_{vc}^2(h') dh' \right)$$
Result (to 1st order in ε): $\varepsilon = \frac{(1-e) \cdot n_{\infty}^2 H_{\infty}}{n_{\infty}^2 H_{\infty} - \int_{h_0}^{h_{\infty}} n^2(h') dh'}$

Note: H_{∞} is needed as input

Another possible way to determine ϵ :

$$\frac{\mathrm{d}H(h)}{\mathrm{d}h}\Big|_{h\to\infty} = 0 \quad \text{(future)}$$

Solution for *n_{VC}* / 4

- → Blue: input, red: output
- → Using H_{∞} = 400km
- Scale height at high altitudes is insensitive to input electron density
- ✓ Reason: y(h) depends on the integral of n_e^2
- Evaluation of this integral can reach numerical limits of type

$$1 + \varepsilon = 1$$

FORMOSAT-3/COSMIC *n*_{VC} reconstruction

- → Using H_{∞} = 500km
- Reconstruction is not sensitive to noise in n(h)
- Even from irregular profiles H(h) can be reconstructed

Conclusions

- We have shown that a direct reconstruction of variable scale height functions is possible
 - → for generalized Chapman layer functions n_{GC}
 - → for Vary-Chap functions n_{VC}
- → n_{GC} -based reconstruction:
 - → inversion by Lambert W function
 - ➤ high susceptibility to noise
- → n_{VC} -based reconstruction:
 - \checkmark inversion by solution of a non-linear differential equation
 - → determining H_0 is non-trivial, but possible

