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Abstract

‘We consider the problem of designing residual generators with least dynamical
orders to solve actuator fault detection and isolation problems for the IMMUNE
benchmark problem. The main result of our analysis is the proof of feasibility of
the complete isolation of all primary actuator/surface faults in the nominal case
by using a minimal number of additional surface angle sensors. The analysis of
the nominal case provides residual filter specifications (reference models) to be
employed for robust synthesis of residual generators.
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1 Introduction

The monitoring of primary actuator failures is of paramount importance for the safe operation
of an aircraft, for a continuous situation awareness of pilots, and for the applicability of fault
tolerant control (FTC) techniques to accommodate with various failure modes. The fault detec-
tion and isolation (FDI) of primary actuator failures which are relevant for the application of
FTC techniques is illustrated in this report for the IMMUNE benchmark aircraft model. This
model has a full set of control surfaces/actuators, and the solution of FDI problem represents a
real challenge both because of the high order of the underlying model as well as the structural
limitations imposed by the model.

The main goals of our analysis are: 1) Proving the feasibility of the FDI of all primary
actuator faults; 2) Illustrating the potential of different approaches; 3) Determining achievable
specifications for robust design; 4) Demonstrating the capabilities of recently developed design
tools to solve complex monitoring problems. In what follows we provide some details on these
goals and their achievement.

1) Several fault scenarios are of interest for actuator failures. The ability to detect single
actuator faults is of major importance, being part of the aircraft control system certification
requirements. Accordingly, a minimum requirement for a modern aircraft control system is that
no single failure must lead to a catastrophic consequence. Simultaneous faults can also occur,
especially in conjunction with surface damages. Their detection and isolation requires a more
involved residual generation system and also the availability of a sufficiently large number of
measurements. One of the main results of our study was to demonstrate the feasibility of FDI
for a complete set of faults in a nominal case corresponding to a normal cruise flight.

2) The monitoring and diagnosis of actuator faults can be done at both component as well
as at system level. The component level monitoring is traditionally used on present day aircraft
and relies on the availability of surface angle sensors. Its capabilities to detect and even identify
various fault types (e.g., loss of effectiveness, stuck or runaway faults, floating surface faults)
have been discussed in [14]. However, this scheme has some intrinsic limitations, as for example,
its inability to detect surface failures involving the loss of effectiveness. Also it does not work
properly in the case of surface sensor failures. Therefore, monitoring all types of faults requires
addressing the FDI problem (at least partially) using a system level approach. However, the
system level approach has its own limitations due to the restricted number of available measure-
ments, and therefore a full FDI is not possible unless additional surface sensors are used. An
important result of our analysis is to show that the best FDI performance in terms of isolation
capabilities and on-line implementation efforts are obtained when combining component level
and system level fault monitoring techniques.

3) The results obtained for the nominal case consist of several residual generators and the
corresponding fault-to-residual dynamics. The latter represent meaningful specifications for a
more realistic design where the robustness aspects against parametric and operational point
uncertainties as well as with respect to disturbances (e.g., wind gusts) are addressed. For this
purpose, both optimal structured residual synthesis techniques [18] as well as optimal model-
matching techniques [12] are envisaged to be employed in a future study.

4) The employed computational tools represent enhancements of tools available in the FAULT
DETECTION Toolbox for MATLAB developed by the author [13], while the underlying algorithms



are refined synthesis methods of least order residual generators [15]. It is worth mentioning,
that due to the relatively large order of the underlying system, the reliable synthesis of low
order residual generators was only possible by employing highly sophisticated computational
techniques, like rational nullspace computations based on Kronecker-like forms or minimum
dynamic covers based order reduction.

2 Fault detection and isolation problem
Consider additive fault models described by input-output representations of the form
y(8) = Gu(s)u(s) + Ga(s)d(s) + G (s)f(s), (1)

where y(s), u(s), d(s), and f(s) are Laplace-transformed vectors of the the p-dimensional system
output vector y(t), m,-dimensional control input vector u(t), mg-dimensional disturbance vector
d(t), and m¢-dimensional fault vector f(t), respectively, and where G (s), G4(s) and G¢(s) are
the transfer-function matrices (TFMs) from the control inputs to outputs, disturbance inputs
to outputs, and fault inputs to outputs, respectively. In a deterministic setting the disturbances
are considered as unknown signals, while in a stochastic setting the disturbances are considered
to be stochastic signals (e.g., white noise).

A linear residual generator (or fault detection filter) processes the measurable system outputs
y(t) and control inputs u(t) and generates the residual signals r(¢) which serve for decision making
on the presence or absence of faults. The input-output form of this filter is

r(s) = R(s) [ ﬁ§§§ } (2)

where R(s) is the TFM of the filter. For a physically realizable filter, R(s) must be proper (i.e.,
only with finite poles) and stable (i.e., only with poles having negative real parts). The McMillan
degree (or dynamic order) of R(s) is the dimension of the state vector of a minimal state-space
realization of R(s). The dimension ¢ of the residual vector r(¢) depends on the fault detection
problem to be solved. For example, for the detection of faults a single residual could be sufficient,
but for isolating a fault among several possible faults a set of residuals grouped into a vector is
needed.

The residual signal r(¢) in (2) generally depends via the system outputs y(¢) of all system
inputs wu(t), d(t) and f(t). The residual generation system, obtained by replacing in (2) y(s) by
its expression from (1), is given by

r(s) = Rs(s)f(s) + Rq(s)d(s) + Ru(s)u(s) (3)

where

Gy(s)

[Rs(s)|Ra(s)|Ru(s)] := R(s) [ A Ga(s)

0

i

For a successfully designed filter R(s), the corresponding residual generation system is proper
and stable and achieves specific fault detection requirements.



For a given detector with a ¢ x (p +m,) TFM R(s), denote by Rz}j(s) the (4, )-th entry of
the corresponding Rf(s). We can define a g x my structure matrix S corresponding to a residual
set as follows:

Sij = 1 ifR;(0)#0
Si; = -1 if R}j(O) =0 and R}j(s) # 0
Sij = 0 iR (s)=0

If S;; = 1 then we say that the fault j is strongly detected in residual 7. If S;; = —1 then the
fault j is only weekly detected in residual ¢. The fault j is not detected in residual i if S;; = 0.
We refer to the i-th row of S as the i-th specification, while the j-th column of S as the signature
(or code) of fault f;. This and related nomenclature used later is borrowed from [2].

The following fault detection and isolation problem (FDIP) can be now formulated: Given
a g X my structure matrix S determine a bank of ¢ stable and proper scalar output residual
generator filters

ri(s):Rf(s)[y“)},i:l,...,q (4)

such that, for all u(t) and d(t) we have:
(Z) T'Z‘(t) = 0 when fj(t) = 0, V] with Sz‘j 7& 0;
(’LZ) 7"@'(75) 7& 0 when fj(t) 75 0, v ] with Sz'j 75 0.

In this formulation of the FDIP, each scalar output detector R(s) achieves the i-th specifica-
tion of the structure matrix S. The simplest case is to solve the fault detection problem (FDP),
for S=[11 --- 1], using a scalar output detector. On the opposite side, to achieve the complete
isolation of maximum k simultaneous faults the choice S = [j is necessary. In many practical
applications this strong isolation requirement can not be achieved due to the lack of sufficient
number of measurements. If we can enforce a structure matrix with distinct fault signatures,
then a so-called week isolation of faults is possible. For example, if for 3 fault inputs the structure
matrix

011
S=1101
1 10

can be achieved, then the occurrence of a single fault f; can be detected if all residuals (excepting
the j-th residual) are non-zero. More insight on how to specify fault signatures can be found in
(2, 3].

Let G, (s) denote the j-th column of G'¢(s) and let S be a given ¢ x m structure matrix. We
denote by @}(s) the matrix formed from the columns of G'¢(s) whose column indices j correspond
to zero elements in the i-th specification. The solvability conditions of the FDIP are given by
the following theorem [2, p. 318]:

Theorem 1 For the system (1) the FDIP with the given fault influence matriz S is solvable if
and only if for each i =1,...,q, we have

rank[Gy(s) Gy (s) Gy, (s)] > rank[Ga(s) Gy(s)] (5)

for all j such that S;; # 0.



The standard approach to determine R(s) is to design for each specification 4, a detector
RY(s) which generates the i-th residual signal r;(¢), and thus represents the i-th row of R(s). For
this purpose, the nullspace method to design least order scalar output fault detection filters of
[15, 14] can be applied. For each specification i, we redefine (temporarily) the fault components
fj corresponding to S;; = 0 as disturbances and solve the FDP for the rest of faults whose indices
Jj correspond to S;; # 0. In this way, we obtain a scalar output detector R(s) which represents
the i-th row of R(s). The resulting global detector can be assembled as

Ri(s)
Rs)=| (6)
R1(s)

We can also solve the FDIP in a stochastic setting, by considering the disturbances as white
noise, with unit covariance. In this case, for each row R’(s) of the detector R(s), we impose
additionally the condition that in the absence of faults, the corresponding residual signal r;(t) is
a white noise with unit covariance. If we denote Ré(s) the j-th row of Rg4(s), then this condition
amounts to ask that Rfl(s) is a co-inner function (i.e., Rfl(s)(Ré(—s))T = 1). Using the approach
proposed in [6], we can update each row of R(s), by replacing R’(s) by (Gg(s))_?Rj(s), where
G%(s)G!(s) = RY(s) is an outer-coinner factorization of R’(s). The inverse (G3(s))~! of the
stable and minimum-phase outer factor Gﬁ(s) is called a whitening filter.

The computational methods for the synthesis of residual generators rely on state space al-
gorithms proposed in [14], where the main computational ingredients are the computation of
proper rational nullspace bases [9, 17], order reduction by employing minimal dynamic covers
based techniques [10], and stable rational factorizations [7]. For all these computations robust
numerical software is available in the DESCRIPTOR SYSTEMS Toolbox [8]. This software served
as basis to implement a first version of a FAULT DETECTION Toolbox [13], where several tools
are available to solve the main classes of fault detection problems. The most recent version of
this toolbox is fully documented in [16]. A recent addition is a new function to compute the
achievable structure matrix for a given system based on a recently developed efficient and reliable
numerical algorithm [19].

3 Generation of linearized nominal aircraft model

The IMMUNE benchmark nonlinear open-loop aircraft model is representative for a commercial
aircraft with the data given in Table 1. The aircraft control input vector u has dimension 22
including the deflections (in [deg]) of 2 outer ailerons (left/right wing), 2 inner ailerons (left/right
wing), 12 spoilers (6 on the left wing/ 6 on the right wing), 2 elevators (left/right), one trimmable
horizontal stabilizer, one rudder and two engine throttles (left /right). The aircraft model includes
the flight mechanics, aerodynamics, propulsion, environment blocks.

3.1 Trimming and linearization

For the linearization of the nonlinear model the standard MATLAB function linmod is used in
conjunction with a highly versatile trimming function trimex.m, which has a similar function-



Table 1: Aircraft data

Wingspan 60m
Overall length 65m
Height 20m
Airspeed range 150-550 kts
Maximum operating Mach number (.86
Operating weight empty 120000kg
Maximum takeoff weight 220000kg
Engines 2

ality as the standard MATLAB tool trim.m available in Simulink. There are however two main
differences between trim and trimex. While trim relies on an optimization based trimming,
trimex relies on efficient nonlinear system solvers available via the mez-function interfaces to
nonlinear system solvers and least-squares routines from the subroutine libraries MINPACK [5]
and PORT [1]. A very useful feature implemented in trimex is the optional trimming with sim-
ple bounds on the trim variables. The superiority of the new trimming tool trimex over trim in
what concerns speed (factor of 10 faster) and reliability (accuracy and feasibility) of the results
has been demonstrated in many trimmability studies.

The second main difference concerns handling of underdetermined systems, a typical case
which arises in flight control applications with redundant control surfaces. Such systems are
handled directly by trim via its optimization based setting. This approach does not generally
guarantee physically meaningful trim results (e.g., symmetric controls when trimming a sym-
metric aircraft). In the case of trimex, a flexible mechanism has been devised to eliminate the
indeterminacy, by allowing to work, instead the full control vector u, with a smaller size control
input @ such that © = I'i, where I is a so-called control distribution matrix. This matrix can be
used to allocate a few control actions to many control surfaces, but also can be used to deactivate
a set of control surfaces during trim or for scaling purposes.

3.2 Aircraft state space model with additive faults

Using the above mentioned trimming and linearization tools, we determined a nominal lin-
earized aircraft model in a straight and level flight. The selected trimming point was: speed =
390.9432kts, (or Mach number 0.6494) and altitude of 25.000ft. The chosen values for mass and
x-axis center of gravity were 180000 kg and 0.3, respectively.

From the obtained linearized model, we built a state space model with additive faults of the
form

#(t) = Ax(t)+ Byu(t) + Bad(t) + By f(1) -
y(t) = Cx(t) + Dyu(t) + Dad(t) + Dy f(t)

where x(t) is the n-dimensional system state vector. The significance of the components of the
variables y(t), x(t), u(t), d(t) and f(t) is described in Appendix A, where also the values of the
matrices of the state-space model are given. The dimensions of vectors z(t), y(t), u(t), d(t) and
f(t), are respectively, n = 10, p = 10, m,, = 22, mq = 3, and my = 8. The corresponding TFMs



of the model in (1) are

Gu(s) = C(sI—A)"'B,+ D,
Gy(s) = C(sI—A)'By+ Dy
Gy(s) = C(sI—A)'By+ Dy

A particular feature of the employed nominal model is that it is unstable. The eigenvalues A(A)
of state matrix A are

[ —0.6646 +1.1951: 7
—0.6646 —1.1951%
—0.0016 +0.0600¢
—0.0016 —0.06001
—1.6550
A4) = 0.0186 +0.8768:
0.0186 —0.8768:
0.0094
0
L 0 |

Morover, one eigenvalue in the origin is not controllable for the system pair (A, [ B, Bg]).

The actuator and engine models are first order systems with the following transfer functions:
10/(s + 10) for each of two elevators, 0.5/(s + 0.5) for the stabilizer, 6.6/(s + 6.6) for each of
four ailerons and ruder, 5/(s 4+ 5) for each of 12 spoilers and 0.66/(s + 0.66) for each of two
engines. The actuators system corresponds to a 22 x 22 block-diagonal TFM which has a state
space realization of the form

Tq(t) =
u(t) =

Aazq(t) + Baue(t)
Coq(t) + Douc(t)

where x,(t) is the state vector of dimension 22 and u.(t) contains the 20 deflection demands and
the 2 thrust demands. The complete aircraft model resulted by coupling the actuators model at
the system input is

] = [0

Aa (t) B,
o[ Jaos [ ] 0 ®)
2] - [ 38 )L ]+ 5 oo
e[ B ]aw+ ] s

where II is an input selection matrix. This model has a state vector of dimension 32, 22 control
inputs, and the number of measured variables can range between 10 and 18. The latter case is
when all control surfaces corresponding to monitored actuators are provided with angle sensors.



By suitably choosing II, this model allows to study the case of an aircraft without angle sensors
(IT is an 0 x 22 empty matrix), or with an arbitrary set of angle sensors (II is formed from up to
8 rows of the identity matrix I5).

The resulting model (8) with actuator models included is not minimal. Besides the uncon-
trollable eigenvalue in the origin, there are 10 unobservable eigenvalues, all equal to -5. This lack
of observability originates from the fact that the actuators of spoilers are coupled to the aircraft
surfaces via a summation of their effects, thus of the 12 eigenvalues (poles) introduced by the
spoiler actuators, 10 are not observable.

4 Solution of FDIP - deterministic case

For the design of a fault monitoring system, we considered two cases. In the first case we
assumed that no surface angle sensors are employed and we determined the best achievable
signature structure which ensures a week isolation of single faults. In the second case, we add a
minimal number of sensors which allows a better isolation of simultaneous faults.

To compute the achievable structure matrix S for the aircraft model, we need to assess
the weak/strong detectability of combinations of faults. For this purpose, for suitably chosen
detectors R'(s), we set S;; = —1 if |R}j(0)| < 0.01 and R}j (s) # 0. In the case, when no surface
angle are used, the achievable structure matrix is a 55 x 8 matrix of the form

1 1 1 11111
o 1 1 1 1 111
o 0 1 1 1 1 11
O 0 0 00001
o 0 1 11 110
0 -1 0 -1 1 1 1 1
0 -1 0 -1 1110
0 -1 -1 0 1 1 1 1

S=11 1 1 01110
1 1 1 10111
1 1 1 100 01
1 1 1 10000
1 1 1 10110
1 1 1 110 11
1 1 1 11010
1 1 1 11101
1 1 1 11100

1 1 1 1111 0|



where, as it can be observed, there are many lines containing negative entries corresponding to
week detectability of the faults. There are 47 strongly detectable specifications which can be
used as basis for selecting an optimal desired set of specifications for the sensor free case.

For example, the signature structure

S;=[11111111]

can be used to perform fault detection at system level (e.g., to complement an already existing
component level monitoring). The resulting detector has order 5 and the step responses from the
faults can be seen in Fig. 1. Thus, strong fault detection can be achieved without any additional
surface angle sensor information.

Amplitude

W

" o5 10 05 10 05 10 05 10 05 10 05 10 05 10 05 1
Ti

Figure 1: Step respl(m)eﬁcses from the faults

It is possible to achieve the isolation of all single faults using the following specification

0 1 1 1 1 0 1 07

101 1 01 1 O

1101 1 0 1 O
Sy =

111 0 1 1 0 O

11110 0 0 O

L0 0 000 0 0 1

which ensures the strong isolation of ruder faults (independently of other faults) and the weak
isolation of the rest of faults occurring one at a time. The resulting bank of 6 detectors has
a global order 32, where the six scalar output detectors have the orders: {6,6,6,6,4,4}. In
Fig. 2 we present the step response of the fault detection system, from which the achieved fault
signature can be easily read out.

By employing angle sensors on the two outer ailerons and on the stabilizer, a better isolation

10
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Figure 2: Step responses from the faults

of simultaneous faults can be achieved using the specification

1 0 0 0 0 0 0 07
001 011 0O
01 0 01 1 0O
5, = 00 0100 O0O0
011001 0O
01101 00O
00 000 O0T1TPO0
L0 0 0 0 0 0 0 1

This provides strong fault isolation for the outer ailerons, stabilizer and ruder (the faults can
be isolated if they occur simultaneously or not with other faults) and weak fault isolation for
left /right inner ailerons and left /right elevators. The resulting bank of 8 detectors has a global
order 27, where the six scalar output detectors have the orders: {1,5,5,1,5,5,1,4}. Note that
the first order detectors correspond to a component level monitoring and the resulting detectors
are the same as when considering actuator/surface systems alone with first order dynamics. In
Fig. 3 we present the step response of the fault detection system, from which the achieved fault
signature can be easily read out.

Strong isolation of all faults, i.e. the specification Sy = Ig, can be achieved with 7 angle
sensors and a detector of global order 9, or with 8 sensors and a detector of global order 8. This
last case corresponds to employing only local monitoring and due to the employed least order
synthesis based approach [14], can be completely recovered using an unique high order system
model.

11
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5 Solution of FDIP - stochastic case

It is interesting to compare two cases for the synthesis of residual generators for fault detection:
first, when we completely ignore the noise inputs in the synthesis of the residual generator, and
second, when we use additionally a whitening filter. In both cases, the resulting filter has order
4. For the first case, we show in Fig. 4 the time response of the residual signal to a right outer
aileron fault represented by an unit step at ¢ = 6.6 sec and white noise disturbance inputs of
covariance 0.1.

Residual response to step input in fault f,

20

10} i
_20F i

-30

" L " < - 5 ! L
0 2 4 6 14 16 18 20
Time' (sec)

Figure 4: Residual r1 response to a unit step in f;

Contrasting with this, in the second case a strong filtering effect can be observed in Fig. 5,
where the same inputs are used. This solution is practically the same as that obtained by using
the recently proposed H_/Hz and H_ /Heo techniques [18].

We can now apply the whitening filters to each residual generator output corresponding to
the signature structure Ss. The resulting total order of the detector is 25 and the orders of

12



Filtered residual response to step input in fault f,

—r, (with noise)
——r, (without noise)

. L L L
0 2 4 6 8

L L L
14 16 18 20

Figure 5: Filtered residual r] response to a unit step in fi

individual detectors are {5,5,5,5,3,2}. Note that this order is less than the global order, 32, of
the corresponding residual generator obtained in the deterministic setting. The time responses
for three single faults in fi, f3, and fs are shown in Fig. 6. Observe that the achieved fault

signatures (columns 1, 3, and 8 of S3) can be easily read out form the corresponding time
responses.

Residual time responses f 1, Residual time responses Iornonzemi: Residual time responses f 1,
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Figure 6: Residuitl time rénsposﬁ"é‘%% to %nitnstéﬁﬁ“%hwsif;gle faults

The global detector corresponding to S5 has order 17, with the individual detectors having
orders: {1,3,3,1,3,3,1,2}. As before, the first order detectors correspond to a component level
monitoring.

The main difficulty of using the stochastic setting is that the dynamics of the detector is
determined by the zeros of the outer factors, and thus is fixed. This led to a poor dynamics of
the fault detection system in always all cases. Thus, although the achieved orders are generally
smaller than for the equivalent deterministic problems, still the detectors are more difficult to
be used in safety critical applications like an aircraft.

13



6 Conclusions

The combination of component and system level fault monitoring allows the practical solution of
the FDIP for 8 primary actuator faults in both deterministic and stochastic settings. We have
shown that 3 surface angle sensors are sufficient for this purpose. All residual generators have
least orders being obtained using recently developed algorithms based on minimal dynamic cover
techniques [15]. All computations have been done using recently developed numerical software
tools included in the current version V0.8 FAULT DETECTION Toolbox of DLR. This tools are
described and fully documented in [16]. The computed detectors for the nominal case will serve
as specifications for a more realistic design of robust residual generators using optimal synthesis
techniques of residual generators [11, 18].

Two aspects are worth of mentioning to illustrate the new features of the performed synthesis.
The first aspect is the use of least order synthesis techniques, which allows to obtain detectors
of acceptable complexity. Note that without this feature, the generic order of each individual
detector is the system order (see [4] for examples) and thus not acceptable for larger order
systems. For example, for the 6 detectors used to achieve the signature S5 in both deterministic
and stochastic settings, the expected order is 6 x 32 = 192, which is certainly not appropriate
for on-line implementations.

The second aspect is determined by the high reliability of the underlying computational algo-
rithms and of the corresponding software. This feature allows to manipulate a unique relatively
large order system representation to achieve a seamless transition between component and sys-
tem level monitoring. In the extreme case when all angle sensors are provided, the computed
results are the same as individually designed detectors for each actuator.
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A System variables and state-space model matrices

The system variables in the state space model (7)

roll angle

pitch angle

yaw angle

angle of attack
angle of sideslip
flight path angle
roll rate

pitch rate

yaw rate

true airspeed

right outer aileron deflection
right inner aileron deflection
spoilery deflection

spoileryo deflection

left inner aileron deflection
W =1 left outer aileron deflection
right elevator deflection
stabilizer trim angle

left elevator deflection
rudder deflection

left engine thrust

right engine thrust

wind speed X axis
d = | wind speed Y axis
wind speed Z axis

right outer aileron fault
right inner aileron fault
left inner aileron fault
left outer aileron fault
right elevator fault

left elevator fault
stabilizer fault

ruder fault

The matrices of the state space model (7) are:
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are defined as follows:

first component of quaternion
second component of quaternion
third component of quaternion
fourth component of quaternion
roll rate

pitch rate

yaw rate

ground speed X axis

ground speed Y aris

ground speed Z axis




I 0 0 0 0 0 0 0 0 —0.0113 07
0 0 0 0 0 0 0 0.5 0  0.0113
0 0 0 0 0 0 0 0 0.5 0
0 0 0 0 0 0 0 —0.0113 0 0.5
A | 0447 0 —19.62 0 —0.003 0  0.061 0 —9.0618 0
0 19.62 0 0.4447 0 —0.062 0 85315 0 —199.3932
19.62 0 —0.4447 0 —0.0777 0 —0.8004 0 197.8868 0
0 0 0 0 0 —0.0239 0 —1.5599 0 0.3470
0 0 0 0 0.0001 0 —0.0073 0 —0.5290 0
I 0 0 0 0 0 0.0019 0 —0.0934 0  0.0136 ]
r 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
B _ | ~0:0009 ~0.0009 —~0.0006 —0.0006 —0.0006 —0.0006 —0.0006 —0.0006 —0.0006 ---
u 0 0 0 0 0 0 0 0 0
0.0552  0.0552 0.0071 0.0071 0.0071 0.0071 0.0071 0.0071  0.0071
—0.0219 —0.0183 0.0143 0.0127 0.0114 0.0095 0.0079 0.0053 —0.0053
—0.0059 —0.0051 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
| —0.0007 —0.0005 0.0007 0.0007 0.0006 0.0005 0.0004 0.0003 —0.0003
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
—0.0006 —0.0006 —0.0006 —0.0012 —0.0012 —0.0009 —0.0009 ~ 0.0021  0.0094 - --
0 0 0 0 0 0 0 0 0
0.0071 0.0071 0.0071 0.0142 0.0142 0.0552 0.0552 —0.1360 —0.6063
—0.0079 —0.0095 —0.0114 —0.0254 —0.0286 0.0183  0.0219 —0.0077 0
0.0001  0.0001 0.0001 0.0002 0.0002 —0.0051 —0.0059 —0.0280 —0.1250
—0.0004 —0.0005 —0.0006 —0.0013 —0.0015 0.0005 0.0007 —0.0002 0
0 0 0 0]
0 0 0 0
0 0 0 0
0 0 0 0
0.0021 0 0.1712  0.1712
0 0.0769 0 0
—0.1360 0 0 0
0.0077  0.0051 0.0007 —0.0007
—0.0280 0 0.0015 0.0015
0.0002 —0.0079 0.0079 —0.0079 ]
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By =

o O O O

0

0.0319

0

0.0123

0

—0.0010

2.5971

0

114.5916

0
0

0.0000

0

0
0
0

0
0
0
0
—0.0314
NE
0.4097
0
0.0038
0 ]
0 114.5916 0 0 0
114.7095 0 0 0 0
0 25971 0 0 0
0 0 —0.0129 0 0.2847
0 0 0 0.2850 0
114.5916 0 0.0129 0 —0.2849
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1.4210 0  0.0644
r 0 0 07
0 0 0
0 0 0
0 0 —0.1467
0 —0.1467 0
Da = 0 0 0|’
0 0 0
0 0 0
0 0 0
| —0.7321 0 0 |
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0 0 07
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
57.2958 0 0
0 57.2958 0
0 0 57.2958
0 0 0
Df =0

Bf:[Bul By, Buys Buig Bui; Buy Bug Bum]




