

Sub-surface glacial structure over Nordaustlandet using multi-frequency Pol-InSAR

Jayanti Sharma, Irena Hajnsek, Kostas Papathanassiou DLR (German Aerospace Center), Microwaves and Radar Institute

11.06.2008

Introduction: Pol-InSAR over Land Ice

Motivation:

- A greater understanding of the properties of glaciers/ice sheets including their topography, velocities, melting/accumulation rates, densities and internal structure (related to rate of extinction)
- SAR (synthetic aperture radar) sensors particularly well-suited for cryospheric measurements (polar areas dark for much of the year, high resolution & coverage)

polarimetry yields information regarding scattering mechanisms (volume+surface scattering), interferometry regarding their distribution with height

Goal:

✓ For the first-time, use Pol-InSAR observables to estimate land ice extinctions

Airborne Polarimetric SAR Interferometry (Pol-InSAR)

in der Helmholtz-Gemeinschaft

Data description

→ ICESAR data campaign

- → conducted in Mar/Apr 2007 over Austfonna ice cap (Summit) and Etonbreen drainage basin, Svalbard, Norway (~ 80°N, 24°E)
- → Joint project between
 - → DLR (German Aerospace Center)
 - → ESA (European Space Agency)
 - → AWI (Alfred-Wegener Institute)

Corner reflector at Summit

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

DLR's E-SAR (left), AWI's airborne platform

E-SAR parameters

	X	L	Ρ
λ [m]	0.031	0.23	0.86
<i>f0</i> [GHz]	9.60	1.30	0.35
PRF [Hz/chan]	1000	400	500
Chirp BW [MHz]	100		
Slant-rng res. ∆rng [m]	1.5		
Slant-rng spac. δrng [m]	1.5		
Az res. SLC ∆az [m]	0.59	0.67	2.00
Az spac.SLC δaz [m]	0.33	0.45	0.72

Experimental Data, Summit, Pauli images

surface (HH+VV) double bounce (HH-VV) volume (2HV)

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Modelling Ice Extinctions:

Volume/Surface separation with Polarimetric Decomposition

Isolation of the Ice Volume

Goal:

In order to estimate extinction of the ice volume, necessary to separate ground and volume contributions

Method:

Estimate ground-to-volume scattering ratios (m) through decomposition of polarimetric covariance [C] matrix (second-order statistics)

$$S = \begin{bmatrix} S_{HH} & S_{HV} \\ S_{VH} & S_{VV} \end{bmatrix} \qquad [C] = \begin{bmatrix} \left\langle \left| S_{HH} \right|^2 \right\rangle & \sqrt{2} \left\langle S_{HH} S_{HV}^* \right\rangle & \left\langle S_{HH} S_{VV}^* \right\rangle \\ \sqrt{2} \left\langle S_{HH}^* S_{HV} \right\rangle & 2 \left\langle \left| S_{HV} \right|^2 \right\rangle & \sqrt{2} \left\langle S_{HV} S_{VV}^* \right\rangle \\ \left\langle S_{HH}^* S_{VV} \right\rangle & \sqrt{2} \left\langle S_{HV}^* S_{VV} \right\rangle & \left\langle \left| S_{VV} \right|^2 \right\rangle \end{bmatrix}$$

Model elements of the [C] matrix using the Freeman 3-component decomposition ¹

¹Freeman, 1998. A three-component scattering model for polarimetric SAR, TGARS, vol.36 no 3.

Polarimetric Decomposition

Freeman-3 Component Decomposition

- ✓ Decomposes [C] into surface, dihedral and volume components
- → Assume: random volume of dipoles
- → Adjust volume component for snow-firn transmissivities (T_s , T_P)

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

L-band, Freeman-3 decomposition: relative powers

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

azimuth

range

P-band, Freeman-3 decomposition: relative powers

azimuth

range

DLR

für Luft- und Raumfahrt e.V.

in der Helmholtz-Gemeinschaft

Volume/Surface Separation: Experimental data vs. theory

Theory:

✓ Expected Bragg surface σ^0 as a function of λ with incidence angle θ^1 (s=1cm, ℓ=20 cm)

Assuming a homogeneous volume, expect same trend for ground-to-volume scattering ratios m
P_s

$$m = \frac{P_S}{P_V} \propto \sigma^0_{Bragg}$$

¹Ulaby, 1982. Microwave Remote Sensing, Active and Passive, Vol. II

Deutsches Zentrum Für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft Homogeneous subset

Ground-to-volume ratios, Subset

- \checkmark As expected, general trend of **decreasing m with** θ at both freqs
- m values higher for P-band than for L-band: perhaps related to significantly less volume backscatter (relative size scatterers with respect to wavelength)

Modelling Ice Extinctions:

InSAR Coherence Model

Coherence modelling

 \checkmark Fundamental InSAR observable coherence: γ

$$\gamma = \frac{\left\langle S_1 S_2^* \right\rangle}{\sqrt{\left\langle S_1 S_1^* \right\rangle \left\langle S_2 S_2^* \right\rangle}}$$

→ Assuming scattering medium is ¹:

uft- und Raumfahrt e.V.

in der Helmholtz-Gemeinschaft

- *infinite*, homogeneously lossy (constant extinction κ_e [1/m])
- consists of uniformly distributed and uncorrelated scattering centres

$$\gamma_{vol} = \frac{1}{1 + \frac{j\cos\theta_r k_{zvol}}{2\kappa_e}} \qquad k_{zvol} = \frac{4\pi\sqrt{\varepsilon}}{\lambda} \frac{\Delta\theta_r}{\sin\theta_r}$$

$$\mathbf{A}_{1} \qquad \mathbf{B}_{1} \qquad \mathbf{R}_{2} \qquad \mathbf{R}_{2}$$

Combine with a ground contribution from snow-firn interface (m = ground-to-volume scattering ratio) and take absolute value:

¹Sharma,2007. *Multi-frequency Pol-InSAR signatures of a subpolar glacier*. Pol-InSAR, 22-26 Jan., Frascati.

Expt Data, All B, mask (0.01 < k_z < 0.1)

 κ_{eVV} L-band

range

R für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Expt Data: Extinction Inv. Subset, All B

L-band, Volume only (m=0)

DLR

für Luft- und Raumfahrt e.V.

in der Helmholtz-Gemeinschaft

P-band, Volume only (m=0)

Summary

Extinction model

- Adapted existing PolSAR decomposition/Pol-InSAR coherence model created for vegetation scenarios to a glacier geometry
- Separated ground and volume contributions using Freeman-3 component decomposition
- *T* Estimated extinctions using InSAR, combining baselines for a more robust solution
- → 2-D images of extinctions at L- and P-band, useful in identifying areal extents of internal ice structure, not visible with optical systems nor 1-D GPR profiles

Future Work

- Extend method to polarimetric decompositions modelling an oriented volume instead of a random volume
- Relate extinctions to geophysical parameters (grain size/density, presence of percolation features such as ice lenses/pipes,etc.)

DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Microwaves and Radar Institute

11.2-1

Volumetric decorrelation

 $\gamma_{vol} = \frac{\int \sigma_{v}(z) e^{-jk_{zvol}z} dz}{\int \sigma_{v}(z) dz}$

- Assuming scattering medium is:
 - ➤ homogeneously lossy (i.e. constant extinction)
 - consists of uniformly distributed and uncorrelated scattering centres

$$\sigma_{v}(z) = \sigma_{v}^{0} e^{\frac{2z\kappa_{e}}{\cos\theta_{r}}}$$

 $→ \sigma_v^0 = averaged normalized RCS per unit vol.$ [m²/m³]

$$\checkmark$$
 κ_e = extinction coeff. [1/m]

- \checkmark z/cos(θ_r) = penetration length in the vol. [m]
- *→* Evaluate $γ_{vol}$ for -∞ < z < 0

 $\gamma_{vol} = \frac{1}{1 + \frac{j\cos\theta_r k_{zvol}}{2\kappa_o}}$

Extinction:

$$\kappa_{e} = \frac{\cos\theta_{r} |k_{zvol}|}{2(1+m)} \sqrt{\frac{|\gamma|^{2} (1+m)^{2} - m^{2}}{1-|\gamma|^{2}}}$$

$$\kappa_e = \kappa_a + \kappa_s$$

$$\uparrow \qquad \uparrow$$
Absorption Scattering
coeff coeff

→ Non-linear solution for extinction κ_e

Extinction Inversion: Sensitivity analysis

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

- Plot bias in inverted extinctions due to an error in m (ground-to-vol scattering ratio)
- constant m assumed; decreasing m with θ will exaggerate trend even further
- non-linear soln for κ_e creates large jumps in soln for
 0 < m < 1

P-band, m=1, κ_e true = 0.1 dB/m, δ m=0.1

