TANDEM-L FOREST PARAMETER PERFORMANCE ANALYSIS

Francesco De Zan, Seung-Kuk Lee, and Kostas Papathanassiou
DLR - German Aerospace Center, P.O. Box 1116, D-82230 Wessling, Germany

ABSTRACT

Tandem-L is a satellite mission being currently studied
at DLR. It foresees the deployment of two L-band SAR
platforms that will fly in close formation enabling bistatic
operations. The mission is intended to serve a number of
different science objectives with applications in the litho-
sphere, biosphere and cryosphere. The variety of appli-
cations and their competition for the use of the system
require that we develope performance models suitable
for system and mission design. In this paper we present
the main concepts developed for height structure retrieval
and performance characterization considering the combi-
nation of single pass acquisitions. We use the Cramér-
Rao bound for a layered model and we study the impact
of the baseline number and distribution. We also describe
simulations with the Covariance Matching and Polariza-
tion Coherence Tomography techniques and argue in fa-
vor of better modeling for forest vertical structure in the
case of limited number of obervations.

1. INTRODUCTION

Tandem-L is a proposal for an innovative radar mission
that enables the systematic monitoring of dynamic pro-
cesses on the Earth surface. Important application ar-
eas are global forest structure and forest vegetation mon-
itoring, measurements of Earth deformation due to tec-
tonic processes, observation of 3-D structure changes in
ice, and the monitoring of ocean surface currents. The
mission goals will be achieved through the deployment
of two satellite platforms with quad-polarimetric L-band
SARs that will be operated for five years.

It is already clear that this mission is intended to serve
many applications and on a global scale. At least 60 mil-
lion square kilometers are involved for forest applications
and some 35 millions for the global tectonic monitoring
campaign. Moreover a high resolution is required. These
factors make the mission design a difficult challenge in
terms of instrument operation, fuel for orbit maneuvers,
data rate and so on. It is therefore necessary to develope
performance models for each of the main applications in
order to optimize the instrument usage and mission ac-
quisition scenario.

Forest height and forest structure are two important prod-
ucts that we plan to derive from multi-baseline and polari-
metric acquisitions. They can be considered final prod-
ucts in their own right but also as precursors for above-
ground biomass estimation.

2. FOREST HEIGHT AND STRUCTURE ESTI-
MATION WITH TANDEM-L

In the performance study our goal is to provide models
that can predict the accuracy of our estimates from radar
observables. Even if we could ignore the actual estima-
tion algorithms, nonetheless we have to take into account
the particular type of acquisitions the mission will be able
to offer. In the case of Tandem-L we will have single-
pass interferograms. Some acquisition will be fully po-
larimetric but some could be dual- or single-polarization
acquisitions. We plan to visit a certain span of baselines
so that tomographic techniques could be used. Due to
feasibility constraints the number of different single-pass
baselines for a given point on the ground will be limited.
Currently we expect that this it will be in the order of
6-8 per year, or 3-4 per tomographic campaign. Tempo-
ral decorrelation concerns lead us to limit ourselves to
the usage of single-pass interferograms, whereas addi-
tional interferograms between different passes could pro-
vide valuable information. In this respect, our evaluation
will be a worst case assessment. In this paper we will
discuss about the retrieval of the vertical scattering pro-
file by mean of multi-baseline SAR tomography or model
inversion [1], [3]. In this case forest height and ground
reference (or phase calibration) are considered as inputs
from indipendent sources, like Pol-InSAR inversion [5].

3. A BRIEF STUDY ON BASELINE SELECTION
BASED ON A LAYERED MODEL AND THE
CRAMER-RAO BOUND

We start evaluating the performance of vertical structure
reconstruction as a function of the number and the distri-
bution of the baselines. These parameters are very impor-
tant for the mission because we will have a limited num-
ber of acquisitions (essentially because we aim at high
resolution global coverage) and an ideal distribution of



the baselines is potentially very expensive in terms of fuel
for orbit adjustment. Indeed with a wavelength of 24cm
(L-band) and a platform height of 760 km it is easy to see
that we need a horizontal baseline around 20km (bistatic
operation) to achieve a height of ambiguity of 10 meters
at the equator for far range (45 degree incidence). This is
particularly critical because the intended flight formation
will cycle from small to large baselines and back several
times during mission life.

We start by considering a simple model for the vertical
profile. It comprises four layers described by cosines on a
pedestal and a narrower cosine (ideally a delta) represent-
ing the ground return or the double bounce trunk-ground
interaction. This model has fixed positions for the layers
but free scattering powers, which are indeed the param-
eters that we want to estimate. A representation of the
model is given in Fig. 1.

The signal received at each angular position (after
spectral-shift filtering) can be modeled as an integral of
random contributions with phase shifts that depend on the
height h:

y(n) = / £(h) exp(jkph)dh )

where £}’ is the phase-to-height conversion for acquisi-
tion n and £ is the stochastic scatterering profile. Collect-
ing all the observations from the different angular posi-
tions in a single column vector y we can define the co-
variance matrix R = E[yy]. In our case the matrix
R will contain many zeros, as we assume total temporal
decorrelation between different passes.

Actually we can define a covariance matrix Cy, corre-
sponding to each independent layer and rewrite R as a
summation of these partial covariances like this:

R =) 0iCy. )

Here the o} represent the weighting of each layer and are
exactly the parameters to be determined. The Cramér-
Rao lower bound (CR) gives us a measure of the theoret-
ical accuracy that can be achieved by our estimators. In
this case (and assuming Gaussian statistics) the compu-
tation turns out to be quite easy. The covariances for the
estimates (i.e. the average square errors on the estimation
of the o7) are contained in the inverse of the Fisher in-
formation matrix and the variances can be read along the
diagonal. The Fisher information matrix has the follow-
ing expression

0 0
I.x=E 902 log(f)@ log(f) 3)

for a probability density f whose parameters to be deter-
mined are the o7. For gaussian variables many simplifi-
cations occur and in our case one can obtain this simple
expression:

L, = {trace]R"*C,R™1Cy]}. 4)

0.8+
0.6+
0.4

0.2

0.0 \ s s !

0.0 0.2 0.4 0.6 0.8
height

o

Figure 1. Layer model for performance of profile recon-
struction.

In the next paragraphs we consider a simple measure of
the total performance. We add together the errors on the
reconstruction of each layer. This corresponds to taking
the trace of the inverse of the Fisher information matrix:

ERR = trace(I™!) (5)

We will consider 50 looks for the performances. Since
the CR is concerned with unbiased estimators, the perfor-
mance is simply linearly scaled by the number of looks.

3.1. Equally spaced baselines

We compare the total error using two to five baselines
equally spaced. The results are shown in Fig. 2. Since the
performance depends on the particular profile, the perfor-
mances of a thousand different random profiles have been
averaged for each baseline choice. The baseline/height
dependence is given as a normalized number, so that for
a volume of height 1 the best spacing in terms of Fourier
analysis would be 1,2, 3, etc. (Said with other words,
the abscissae represent the volume height divided by the
height of ambiguity) This allows an analysis independent
of actual baselines and forest heights, since what matters
is their combination. The same graph can be read both
as the variation of the performance given a fixed forest
height and different baseline spacing (when one wants
to decide roughly the baselines suiting an average for-
est height), or as the variation of the performance given a
baseline set and for different forest heights (which might
occur in a scene after one has set the baselines).

Coming to the discussion of Fig. 2 the performance is
limited from each side by two different factors. On the
small baseline side the resolution is inadequate as the
baselines are not enough spaced. On the other side the
baselines are too stretched and ambiguity is the bottle-
neck. From this analysis two single pass pairs are not
enough. They provide acceptable performance only for
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Figure 2. Performance for different baseline spacings.

Table 1. Different baseline patterns studied.

Case

A|l05 10 20 3.0
B|05 1.0 25 35
C|05 1.0 20 4.0
D|05 10 30 40

a specific normalized baseline spacing, whereas three to
four baselines appear to cover a wider span of possible
heights.

3.2. Irregularly spaced baselines

We want to analyse also the case of irregularly spaced
baselines. This can arise for different reasons. One
of them is the possible combination of the tomographic
campaign with a Pol-InSAR campaign that will require
two-three small baselines. We try different baseline pat-
terns and spacings. The (normalized) patterns are de-
tailed in Tab. 1 and then scaled similarly as for the regu-
lar baseline case. The effects on the left and right side are
similar and can be interpreted as a product of lack of reso-
lution or ambiguous energy. However a new phenomenon
is present for certain baseline combinations, namely the
cases B and D. A new intermediate peak appears and
seems to be related to the missing sample at position 2.
From this analysis it looks like that we must be careful
in the sampling even if we are not strictly using a Fourier
approach for tomographic reconstruction. On the other
hand we can see the benefit of using even a single large
baseline (case C) to improve the resolution.
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Figure 3. Performance for irregular baseline spacings.
The four basic baseline combinations are detailed in
Tab. 1 and scaled according to the horizontal axis.

4. COMET AND PCT

So far no estimator has been introduced in the discussion
since we could rely on the Cramér-Rao theoretical pre-
dictions. Introducing an estimator allows us to check the
predictions with simulations as a function of the number
of looks. In this work we adopt the Covariance Matching
Estimation Technique (COMET) whose description can
be found in [2]. Its application to SAR tomography is de-
scribed in [1]. Essentially it is derived from maximum-
likelihood estimators with the aim of accounting for the
statistics of the observables (i.e. the sample covariance
matrix statistics). With maximume-likelihood estimators
it shares the asymptotic efficiency. A particular advan-
tage over maximum-likelihood estimators is that it pro-
vides a reduced computational cost for the estimation of
so-called linear parameters, which in our case are the in-
tensities of the different layers. If we wanted to introduce
the layer positions in the estimate, the estimation of this
part would be expensive and would need an exhaustive
search in the parameter space. This estimator is attractive
because could be used for quick simulations in situations
when the CR limit is not enough.

The general form of the metric to be minimized for
COMET is given here:

~

M = trace | R"Y(R-R)RY(R — R)} (6)

where R is the sample covariance matrix, and R is the
modeled one, which depends on the parameters. Sim-
plified versions hold for the mentioned linear parameters
and in our case the cost is limited to a general linear sys-
tem inversion that has as many unknowns as the number
of layers.

Some simulations confirmed that even for a relatively
small number of looks COMET performance is close to



Table 2. COMET performance and CR predictions.

Looks | mean (est.) mean var (est.) var (CR)
50 0.47 0.5 0.0042 0.0045
0.005 0.0 0.0023 0.0026
0.92 1.0 0.0078 0.0077
36 0.45 0.5 0.0055 0.0063
0.007 0.0 0.0031 0.0037
0.90 1.0 0.0098 0.0107
25 0.44 0.5 0.0083 0.0091
0.02 0.0 0.0047 0.0053
0.85 1.0 0.0142 0.0154

the CR bound (the theory guarantees this for a large num-
ber of looks). The results from this simulations can be
found in Tab. 2 comparing the last two columns. This
example considers only three layers with fixed energies
(1.0, 0.0 and 0.5), which are the only parameters to be
estimated given the observables from 5 regularly-spaced
baselines. It is possible to see that the bias is reduced as
the number of looks increases.

In recent years an algorithm was proposed (Polarization
Coherence Tomography - PCT[4]) to reconstruct vertical
profiles starting from the complex coherences. It deals
naturally with single-pass interferograms and we want to
investigate the possible differences with COMET. This
algorithm (PCT) reconstructs the profile using as a basis
the Legendre polynomials. It establishes the linear re-
lation between the polynomial coefficients and the com-
plex coherences (which depend upon the baselines) and
inverts it to find the coefficients.

In order to carry out the comparison with COMET we
model the partial covariance matrices (Cy, in section 3) as
to represent each one a Legendre polynomial and we do
the inversion feeding the COMET estimator with the nor-
malized covariances, i.e. the complex coherences. The
results, after a normalization to the first coefficient, are
shown in Fig. 4 and 5. The two reconstructions are al-
most identical. Due to the stochastic nature of the scatter-
ing even 50 looks are not enough to perfectly reconstruct
the profile. However, in all the simulations that we run,
the two estimator were giving practically the very same
results.

In this kind of problems we have to consider that we are
on the border between tomography and model inversion,
since we are dealing a very limited number of baselines.
If we had many baselines we could adopt a large tomo-
graphic basis and the choice of the basis would not be so
important. Here we want to reconstruct the profile with
a few functions and we want to pick up the ones that ex-
plain quickly most of the observed energy. PCT, being
based on Legendre polynomials, is not able to approxi-
mate high frequency components but after a large number
of polynomials. A model based approach would fit bet-
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Figure 4. Example for COMET and PCT comparison.
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Figure 5. Another example for COMET and PCT com-
parison.

ter. For instance if we expected to see a strong ground or
double-bounce component we could incorporate it easily
in the model as a delta and avoid being blinded by it.

Generally speaking the best solution would be to adapt
the basis or the model to the particular case at hand in-
stead of relying on a particular basis that should fit all.

5. DISCRIMINATION BETWEEN DIFFERENT
PROFILE CLASSES

Another use of an estimator in the context of performance
analysis is the simulation of a classification approach. In
this case the performance is measured according to the
ability to discriminate between different forest models.
We simulate acquisitions with five different forest models
and see which one is recognized. For each possible model
we identified the parameters (intensities) with COMET
and computed a likelihood. Finally we picked the model
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Figure 6. Test models for classification approach.

Table 3. Confusion matrix for a classification problem
with 15 looks. Each column represents the results for a
given model of those in Fig. 6

% I II I v v
I 49 15 3 4 4
II 27 80 19 1 2
III 4 2 72 0 0
v 9 0 5 93 2
v 11 3 1 2 92
Total | 100% 100% 100% 100% 100%

with the highest likelihood.

The five models are displayed in Fig. 6. They all have a
delta at ground level and layers at different heights and
with different thickness. As above, the intensities are left
free to vary with a certain distribution.

The ability to distinguish between the five models can
be interpreted as a resolution capability. The number
of looks as well as the baseline distribution have influ-
ence on the performance. This simulation can be used to
study which is the minimum number of looks required so
that the performance will be acceptable and limited more
by our ability to model the profile efficiently than by the
stochastic character of the data themselves.

Some results for 15 looks are reported in Tab. 3. They
were obtained simulating 1000 trials for every of the
mentioned models. Each trial had random intensities for
the layers, whose position and thickness was fixed.

Increasing the number of looks the confusion matrix re-
sembles more and more a diagonal matrix. This can be
seen in Tab. 4 where the same simulations were run for
50 looks (100 trials).

Table 4. Confusion matrix for a classification problem
with 50 looks. Each column represents the results for a
given model of those in Fig. 6

% I II I v \Y%
I 83 3 0 1 0
II 14 97 7 0 0
I 0 0 93 0 0
v 3 0 0 99 0
v 0 0 0 0 100
Total | 100% 100% 100% 100% 100%

6. CONCLUSIONS

In this paper we have described some basic ideas about
vertical profile reconstruction using single-pass interfer-
ograms that will be available with Tandem-L. We sug-
gest that the Cramér-Rao bound can be used to predict
the performances with a simple layered model (averaging
on many profiles) or that a classification approach can be
simulated at the cheap cost provided by COMET estima-
tor.

From our simulations it appears that even with only three-
four interferograms we can reconstruct some low-pass
components of the profile and that might be enough to
support biomass estimation. A minimum number of
looks of 30-50 can be necessary to reduce the statisti-
cal variability of the observables so that the main limita-
tion in the reconstruction comes from our ability to model
the profile. A regular baseline sampling is not necessary
but some care has to be taken in the baseline distribution
choice.

Given the extremly reduced number of observations the
choice of good models for the vertical profile becomes
of great relevance. We think that this aspect should be
further investigated with real data (and many baselines).

In this work we have omitted to consider the effect of ad-
ditive noise (both thermal noise and ambiguity noise) and
phase noise, to concentrate on the specific aspects of this
reconstruction problem. Also, possible temporal correla-
tion between different passes has to be considered more
deeply. Indeed it can have some paradoxical effect in re-
ducing the number of looks in the case of dense sampling
in the angular domain.

Another effect that can potentially reduce the perfor-
mance is the variation of the scattering profile between
different passes, due to seasonal structural changes (e.g.
leaves-on leaves-off effects) or scattering changes (e.g.
due to moisture changes). To limit this effect we will
have to try to schedule the acquisitions as close in time as
possible.
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