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ABSTRACT  

Polarimetric decomposition techniques and inversion 
algorithms are developed and applied on the OPAQUE 
data set acquired in spring 2007 to investigate their 
potential and limitations for soil moisture estimation. A 
three component model-based decomposition is used 
together with an eigenvalue decomposition in a 
combined approach to invert for soil moisture over bare 
and vegetated soils at L-band. 
The applied approach indicates a feasible capability to 
invert soil moisture after decomposing volume and 
ground scattering components over agricultural land 
surfaces. But there are still deficiencies in modeling the 
volume disturbance. The results show a root mean 
square error below 8.5vol.-% for the winter crop fields 
(winter wheat, winter triticale and winter barley) and 
below 11.5Vol-% for the summer crop field (summer 
barley) whereas all fields have a distinct volume layer 
of 55-85cm height. 

1. INTRODUCTION 

Soil moisture represents a key observable in flood 
forecasting and hydrological modeling. In order to 
identify critical catchment states before flooding events 
the possibility to retrieve soil moisture on a catchment 
scale from a SAR system with frequent coverage is 
highly desirable. Since most of the landscape in mid-
Europe is at least seasonally covered by vegetation, the 
estimation of soil moisture increases in complexity due 
to the presence and gradual increase of vegetation over 
the growing season. In order to estimate soil moisture 
under the vegetation layer the volume needs to be 
subtracted. For this reason polarimetry is used to 
increase the amount of observables. 
The main goal is to investigate the potential of 
polarimetric decomposition techniques to separate the 
individual scattering contributions within one resolution 
cell. A combination of an eigenvalue and a model-based 
decomposition is applied on L-band data to invert soil 
moisture. In the following the polarimetric 

decomposition techniques, the application on 
experimental data including inversion and validation for 
four different crop types are presented. 

2. POLARIMETRIC DECOMPOSITION 
TECHNIQUES 

Fig. 1 represents a scheme for application of the 
polarimetric decomposition techniques and inversion 
algorithms for soil moisture estimation. In a first step an 
eigenvalue decomposition is applied to calculate the 
polarimetric entropy (H) and alpha (α) values [1]. An 
H/α-criterion is calculated from the X-Bragg model of 
[2] considering the incidence angle and a maximum soil 
moisture of 50vol.-% to determine the limiting entropy 
and alpha values for surface scattering. Pixels matching 
this criterion are classified as non-vegetated bare soil 
pixels and are inverted for soil moisture via the X-
Bragg inversion approach published in [2]. 
 

Figure 1. Scheme of polarimetric decomposition 
techniques and inversion algorithms for soil moisture 

 
For pixels not matching the criterion a scattering 
scenario consisting of ground and vegetation 
components is assumed. In order to select the 
orientation of a vegetation volume the approach of 
Yamaguchi et al. [3] is applied to model the 
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(1) 
 
vegetation layer with horizontally oriented, vertically 
oriented or randomly oriented dipoles. After the 
estimation of the volume orientation, the volume power 
fv is extracted by solving Eq. 1 using the respective 
volume. As the three component decomposition can 
lead to negative eigenvalues of the ground components, 
the volume power fv is corrected for the different 
volume orientation cases according to [4]. After the 
subtraction of the corrected and selected volume 
component the ground components are used to estimate 
the scattering dominance by a criterion defined in [5] to 
set the parameter α or β in the non-dominant case to 
zero [6]. 
Subsequently either the dihedral or the surface 
component is inverted for soil moisture depending on 
the scattering dominance. As a last step the estimated 
soil moistures from the bare soil and the vegetated soil 
areas are unified in one total soil moisture result. A 
more detailed description of the single methods is given 
below. 
 
A. Method for bare soil 
 
The extended Bragg model (X-Bragg) of [2] results in 
the coherency matrix [TXB] shown in Eq. 2 consisting of 
a term ψ controlling the depolarization as well as the 
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 level of roughness and the parameters fs and β 
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which are functions of the Bragg coefficients (Rh, Rv) 
and a roughness parameter ms 
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The Bragg coefficients depend on the dielectric constant 

of the soil εs and the incidence angle θ. 
For the inversion the calculated entropy and alpha 
values from the data are compared with the entropy and 
alpha values of the X-Bragg model coherency matrix 
formed by a variety of εs-values and the according 
incidence angle in order to find the closest match and 
the desired dielectric constant value, that is converted 
into soil moisture by a universal polynomial [7]. 
 
B. Method for vegetated soil 
 
Selection of the volume orientation 
The orientation of the volume is estimated by a power 
ratio Pr [3]. 
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Pr < -2dB          - vertically oriented dipoles 
-2 < Pr < 2dB    - randomly oriented dipoles  
Pr > 2dB         - horizontally oriented dipoles 

 
For modeling a randomly oriented volume of dipoles 
the orientation distribution results in a distribution 
width of Δτ = 2π and a probability density function 
(pdf) of )/()( πτ 21p =  within πτ 20 << . For 
modeling an oriented volume of dipoles the orientation 
distribution results in a distribution width of Δτ = π. For 
vertical orientation the pdf as ττ sin)/()( 21p =  is 
defined within πτ <<0 , whereas for horizontal 
orientation the pdf as ττ cos)/()( 21p =  within 

22 // πτπ <<−  is used. Finally the following volume 
coherency matrices are derived: 
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      Random Horizontal  
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Volume power extraction 
After retrieval of the appropriate volume matrix Eq. 1 is 
solved for the volume parameter fv, whereas for ψ an 
empirical first estimate of π/12 is assumed. It is 
important to note that fv is calculated differently 
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according the volume orientation and the scattering 
dominance. Since this is only known in a later step both 
fv-values, from surface and from dihedral dominant 
cases, have to be calculated until the scattering 
dominance is determined. 
 
Correction of volume power 
A remaining coherency matrix [TV

rem] is calculated as 
displayed in Eq. 7 and solved for its three eigenvalues 
[4]. The three eigenvalue equations are set to zero and 
solved for fv.  
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These solutions for fv are compared with the extracted fv 
of the previously calculated three component 
decomposition to find the minimum fv-value. This 
minimum fv is used in the next step for the retrieval of 
the ground components (surface, dihedral).  
 
Soil moisture inversion from ground components 
In the next step the retrieved volume component [TV] is 
subtracted from the ground components (surface [TXB], 
dihedral [TAD]) in order to retrieve the characteristics 
from the underlying soil. The surface component [TXB] 
is modeled as an X-Bragg surface component according 
to Eqs. 2-4 and can be inverted into soil moisture via 
the ratio β [8, 9]. The dihedral component [TAD] is 
modeled as a Fresnel reflection of the soil and the 
perpendicular stem of a plant with the parameters α and 
fd  
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which are functions of the Fresnel coefficients (Rs,v, 
Rs,h, Rt,v, Rt,h) and a phase difference φ depending on the 
incidence angle θ and the dielectric constant of the 
surface εs and of the trunk εt [9]. Additionally a 
vegetation attenuation term Lv and a roughness loss term 
Ls are introduced in order to account for the vegetation 
attenuation during the propagation through the 
vegetation layer as well as for the scattering loss caused 
by the soil roughness of the dihedral backscattering 
amplitude fd: 
 
                       ))/(exp( minmax μμ −−= 1Lv     (9) 
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In Eq. 9 μmax and μmin represent the maximum and 
minimum ground to volume ratios, which can be 
calculated by the eigenvalues of the summed ground 
component matrices ([TS]+[TD]): μmax=λ1/Pv and 
μmin=λ2/Pv. In Eq. 10 ks is the product of the vertical 
wave number k and the standard deviation of the 
vertical roughness s, which can be estimated from the 
anisotropy A as published in [2]. The dihedral 
component can be inverted to soil moisture via fd and α 
after removal of the vegetation attenuation and the 
roughness loss [8, 9]. 

3. EXPERIMENTAL RESULTS 

The decomposition and inversion algorithms were 
applied on the data set of the OPAQUE campaign, 
which was conducted in May 2007 by the University of 
Potsdam, the German Research Centre for Geoscience 
(GFZ) and the German Aerospace Center (DLR) in the 
Weißeritz catchment area near Dresden, Germany. The 
OPAQUE campaign studies operational discharge and 
flooding predictions in head catchments and aims to 
reduce the uncertainties in flood forecasting and 
prediction of rainfall-runoff processes by identifying 
critical catchment states caused by saturated soil layers 
[10]. In the frame of this campaign full-polarimetric 
SAR data (L-band) were acquired by the E-SAR sensor 
of DLR. Simultaneously, soil moisture was measured 
with time domain reflectrometry (TDR) probes by the 
University of Potsdam and GFZ on selected test fields 
with different vegetation and soil types. In addition, 
vegetation parameters were collected to characterize the 
biomass layer. 

3.1. Polarimetric Decomposition 

Focusing on the left image of Fig. 3 the result of the 
three component decomposition is shown in an RGB-
image of the normalized power components, where the 
dihedral power is set to red, the volume power is set to 
green and the surface power is set to blue. Comparing 
the RGB-image with the land use map the forested areas 
show a clear and homogenous volume scattering 
signature, whereas on the agricultural fields surface or 
dihedral scattering are mainly dominant except for the 
winter rape fields which also illustrate a distinct volume 
scattering component, due to a dense vegetation layer of 
120cm height. The image was taken in the end of May 
2007 when most of the agricultural areas, especially the 
winter crops, were already covered by vegetation of at 
least 50cm height. Therefore the dihedral scattering is 
strongly visible, which can be seen on the winter 
triticale (which is a crossing of wheat and rye plants) 
and winter barley fields in the middle of the image. 



Furthermore the bare soil fields show a clear surface 
dominance as expected. 
But there are also fields which change their scattering 
dominance within the field parcel although the same 
crop type is present. One example is an area of 
grassland in the centre of the image, which changes in 
range direction from surface to dihedral scattering. This 
can be understood from Fig. 3, where the local 
incidence angle exhibits a clear gradient from steep 
angles of 25° to more shallow angles of 55°, which 
constitutes the influence of topography on the scattering 
dominance. 

3.2. Soil moisture estimation 

Fig. 4 displays the estimated soil moisture for the 
L-band scene of May 2007 for the single component X-
Bragg approach, the surface and the dihedral 
component of the three component model-based 
decomposition. Additionally the sum of all soil moisture 
inversion approaches is presented in Fig. 4d. The 
inverted soil moisture values range from 0 to 50vol.-%, 
whereas the areas coloured in white represent non-
invertible pixels. Starting with the soil moisture from 
the single component X-Bragg approach the areas 
classified for this approach are relatively sparse and lie 
mostly in the far range region. An exception are the 
black areas along azimuth direction which exhibit very 
steep incidence angles (< 5°) and cannot be considered 
any further. The level of inverted soil moisture values is 
quite high,  which originates from the relatively low 
entropy and alpha values modeled with the X-Bragg 
model compared to the high entropy and alpha values 
from the data. 
Soil moistures retrieved from the surface and dihedral 
scattering component of the three component 
decomposition show different densely inverted land use 
classes which are the result of the scattering dominance 
specified in the model-based decomposition. Hence, for 
the inversion from the surface component the summer 
corn fields on the lower right of the image, which were 
only sparsely vegetated at the time of acquisition, 
demonstrate a homogenous inversion result. The 
inversion from the dihedral component indicate a quite 
complete inversion for the winter triticale and the winter 
barley fields, which grew already to a vegetation height 
of more than 60cm causing a distinct dihedral scattering 
component. Finally Fig. 4d represents the sum of all 
inverted soil moistures, where major parts of the 
forested areas show a sparse inversion. In addition a 
long stretched region in near range illustrates a lack of 
inversion. This might be explained after comparison 
with the local incidence angle map within the regions of 
no inversion. Here the angles are below 20° incidence 

and the observable space spanned by polarimetry might 
limit the inversion. 

4. VALIDATION 

The four different crop types winter wheat, summer 
barley, winter triticale and winter barley were chosen 
for analysis of soil moisture estimation under vegetation 
cover. In order to describe the vegetation layer Tab. 1 
and Fig. 2 are included. 
 

Table 1. Description of vegetation volume for the 
investigated fields with different crop types 

Vegetation  
parameters 

Winter 
wheat 

Summer 
barley 

Winter 
triticale 

Winter 
barley 

Plant height [cm] 55 45 85 70 
Row distance [cm] 10 23 10 10 
Wet biomass [kg/m²] 2.85 0.93 3.34 3.31 

 
The validation compares soil moisture values averaged 
from three ground measurement points in 0-5cm depth 
with the estimated soil moisture values from the surface 
and the dihedral scattering contribution in vol.-%. For 
the ground measurements TDR-probes of type 
“ThetaProbe ML2x” were used. For the retrieval of the 
estimated soil moistures a 9x9 box around the sampling 
points leading to 81 looks was taken for comparison 
regarding that only boxes with at least 10 invertible 
pixels were considered to avoid the influence of non-
representative outliers. In Fig. 5 the correlation between 
measured and estimated soil moisture values for the 
four different crop types is displayed together with the 
root mean square error (RMSE) and the mean of the 
standard deviations (STDDEV) of the estimated soil 
moisture values (cf. Tab. 2). 
 

Table 2. Root mean square error and mean of the 
standard deviations of estimated soil moisture values for 

the investigated fields 
Fields STDDE

V 
RMSE 

Winter wheat 10.44 8.47 
Summer barley 12.52 11.48 
Winter triticale 10.61 8.45 
Winter barley 12.31 8.50 

 
The estimated soil moisture values on the winter wheat 
field show no significant trend and over- and 
underestimate the measured soil moisture. For the 
summer barley and the winter barley fields an 
underestimation is visible in Fig. 5 caused by the 
inverted soil moisture values of the surface component.  
This can be linked to a β-parameter that is too small 
after removal of the volume component. This leads to 



the conclusion that the modeling of the vegetation 
volume is still not satisfactory. On the other hand soil 
moisture values from the triticale field are mostly 
inverted from the dihedral component and depict a 
slight overestimation, which might be induced by an 
overcompensation of the attenuation and roughness 
correction which is a first order estimate in order to 
keep the parameter space constant.  
 

  

  

Figure 2. Photographs of investigated fields: Winter 
wheat (upper left), summer barley (lower left), winter 

triticale (upper right) and winter barley (lower right) on 
the day of acquisition (a scale bar is included showing 

the height of the vegetation.) 

5. SUMMARY 

Combined polarimetric decomposition techniques and 
inversion algorithms were applied on a L-band scene of 
the OPAQUE data set acquired by the E-SAR sensor of 
DLR. The single component X-Bragg approach can 
only be applied for a very limited amount of non-
vegetated pixels and performs best in the shallow 
incidence region (>50°). The results of the three 
component model-based decomposition demonstrate its 
applicability on vegetated agricultural fields, as already 
denoted in [8].  

Moreover, both ground scattering components (surface, 
dihedral) were used for the estimation of soil moisture 
under vegetation cover of at least 45cm height and 
0.9kg/m² wet biomass. Finally the retrieved soil 
moisture values are validated against ground 
measurements taken with TDR probes. The RMSE of 
the estimated soil moistures from both scattering 
contributions (surface, dihedral) and from all 
investigated crop types exhibits an accuracy of 8.5-
11.5vol.-%. Nevertheless a mean standard deviation of 
the estimated soil moistures of 10.4-12.3vol.-% 
indicates a broad range of inverted moisture values. 
Reasons for this might be on one side the complex and 
spatially highly varying scattering scenario inverted 
with a limited number of observables and on the other 
side the characteristics of soil moisture itself, which is 
also varying distinctly over one field parcel. Further 
investigations are necessary to gain a deeper 
understanding and to improve the modeling of the 
volume disturbance as well as studying the influence of 
topography on the inversion of soil moisture.  
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Figure 3. RGB-image of normalized power components after decomposition (R: Dihedral G: Volume B: Surface, black 
areas are inverted with X-Bragg method) (left), local incidence angle (middle) and land use (right) for the L-band 

scene. 
 
 

         (a)                        (b)               (c)              (d)  
Figure 4. Estimated soil moisture of (a) the single component X-Bragg method, (b) the surface and (c) the dihedral 

component of the three component model-based decomposition. (d) shows the total soil moisture. White colour 
represents non-invertible pixels (averaging window: 4x4). 
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Figure 5. Correlation between measured and estimated soil moisture values in vol.-% for winter wheat (upper left), 
summer barley (lower left), winter triticale (upper right) and winter barley (lower right), RMSE = root mean square 

error of estimated soil moistures, STDDEV = mean of the standard deviations of estimated soil moistures. 
 

 
 


