
MULTITARGET ERROR ESTIMATION AND ADAPTIVITY IN

AERODYNAMIC FLOW SIMULATIONS

RALF HARTMANN∗

Abstract. Important quantities in aerodynamic flow simulations are the aerodynamic force
coefficients including the pressure induced and the viscous stress induced drag, lift and moment coef-
ficients. In addition to the exact approximation of these quantities it is of increasing importance, in
particular in the field of uncertainty quantification, to estimate the error in the computed quantities.

In recent years a posteriori error estimation and goal-oriented refinement approaches have been
developed for the accurate and efficient computation of single target quantities. The current ap-
proaches are based on computing an adjoint solution related to each of the specific target quantities
under consideration. In this paper we extend this approach to the accurate and efficient computation
of multiple target quantities. Instead of computing multiple adjoint solutions, one for each target
functional, the new approach is based on the solution to one discrete adjoint problem and one dis-
crete error problem. This way only two auxiliary problems are required irrespective of the number of
target functionals. The practical performance of this approach is demonstrated for a laminar com-
pressible flow. In particular, the proposed approach is compared to the standard approach of error
estimation and goal-oriented refinement as well as to residual-based refinement. The performance of
the algorithms is measured in terms of computing resources required for meeting industrial as well
as academic accuracy requirements on the computed force coefficients.
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1. Introduction. In aerodynamic computations like compressible flows around
airfoils, much emphasis is placed on the accurate approximation of specific target
quantities, in particular, the aerodynamic force coefficients like the pressure induced
as well as the viscous stress induced drag, lift and moment coefficients, respectively.
First, the force coefficients should be computed as accurately and efficiently as possible
in order to avoid wasting computing resources. Second, it is of increasing importance
to have an idea on how accurate the obtained results are, in particular, to have an
estimate of the error in the computed force coefficients. In fact, the discretization
error is one of the main sources of uncertainty in flow computations.

While local mesh refinement is required for obtaining reasonably accurate results
in applications, the goal of the adaptive refinement is either to compute the force
coefficients as accurately as possible within given computing resources or to compute
these quantities up to a given tolerance with the minimum computing resources re-
quired. In both cases a goal-oriented refinement is needed, i.e. an adaptive refinement
strategy specifically targeted to the efficient computation of the quantities of interest.
Furthermore, in the latter case, an estimate is required on how accurate the force
coefficients are approximated, i.e. an a posteriori error estimate that quantifies the
error on the numerical solution measured in terms of the quantity of interest would
be useful.

In recent years there has been considerable progress in the development of reliable
a posteriori error estimates and goal-oriented (adjoint-based) adaptive mesh refine-
ment [6, 20, 7, 22, 8], in particular for compressible flows [14, 15, 18, 11, 24, 23]. These
approaches are based on computing an adjoint solution related to the specific target
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quantity under consideration. However, in many applications there is not only one
but there are several quantities of interest like the collection of aerodynamic force co-
efficients mentioned above. Current approaches of error estimation and adjoint-based
adaptive mesh refinement require the computation of one adjoint solution for each of
the target quantities.

In this paper we propose an extension of this approach to the efficient and accurate
computation of multiple target quantities. Given, say N target quantities we replace
the computation of N adjoint solutions as required in current approaches by the
solution of two auxiliary problems, namely one discrete adjoint problem and one
discrete error problem where the latter can also be considered as the adjoint to the
adjoint problem. In particular, the solution to the discrete error equation provides the
a posteriori error estimation of arbitrary many target quantities. Furthermore, the
solution to the adjoint problem related to an appropriately defined combination of the
original target functionals provides the adjoint-based refinement indicators required
for goal-oriented refinement.

This approach will be demonstrated for a symmetric interior penalty discontin-
uous Galerkin (DG) discretization of the compressible Navier-Stokes equations [19].
Note, however, that this approach is generic in the sense that it can be applied to
other finite element discretizations (and with modiffications to higher order Godunov
finite volume methods [5]) as well as to other partial differential equations. Further-
more, we note that this work represents an extension of earlier work [16] on the scalar
inviscid Burgers equation considering point values to the case of laminar compressible
flows considering aerodynamic force coefficients.

The practical performance of this approach will be demonstrated for a laminar
compressible flow. In particular, the proposed approach is compared to the stan-
dard approach of error estimation and goal-oriented mesh refinement as well as to
residual-based mesh refinement. The performance of the algorithms is measured in
terms of computing time required for meeting industrial as well as academic accuracy
requirements on the computed force coefficients.

This paper is structured as follows: In Section 2 we recall the standard approach
of error estimation and goal-oriented mesh refinement for single target functionals.
We extend this approach in Section 3 to the case of multiple target functionals. In
particular, we introduce the discrete error equation which replaces N adjoint prob-
lems for estimating the error with respect to N target quantities. Then in Section 4
we introduce the adaptive algorithm targeted at the accurate and efficient approxi-
mation of the N target quantities. There, we define the adjoint problem related to
a target functional which appropriately combines the original target functionals. In
Sections 5 and 6 we introduce the compressible Navier-Stokes equations and recall
its interior penalty discontinuous Galerkin discretization given in [19]. In Section 7
we then recall the primal residual form of the discretization and the target functional
modifications [12] for the drag and lift coefficients required for adjoint consistency and
give the respective modification for the moment coefficient. We then derive the error
representation for the modified target functionals and a Type II error bound yielding
the residual-based indicators. Finally in Section 8 we demonstrate the performance
of the proposed algorithm in comparison to current goal-oriented and residual-based
adaptive algorithms and draw some conclusions in Section 9.

2. Error estimation and adaptive mesh refinement for single target

quantities. We begin by recalling the general approach of duality based a posteri-

ori error estimation for single target functionals; see e.g. [7, 10, 14] among many
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others. Furthermore, we give the standard algorithm, as described in e.g. [6, 14], of
goal-oriented (adjoint-based) adaptive mesh refinement tailored to the accurate and
efficient computation of a single target quantity.

Let us consider the nonlinear problem

Nu = 0 in Ω, Bu = 0 on Γ, (2.1)

where Ω ∈ R
d, d > 1, is an open bounded domain with boundary Γ = ∂Ω. N is a

nonlinear differential operator and B is a possibly nonlinear boundary operator on
Γ. Let N : V × V → R be a semi-linear form, nonlinear in its first and linear in its
second argument, such that the nonlinear problem (2.1) is discretized as follows: find
uh ∈ Vh such that

N (uh,vh) = 0 ∀vh ∈ Vh. (2.2)

Furthermore, let us assume that the discretization (2.2) is consistent, i.e. the exact
solution u ∈ V satisfies the following equation:

N (u,v) = 0 ∀v ∈ V. (2.3)

Here, V is some suitably chosen function space including the exact solution u ∈ V to
the primal problem (2.1) and satisfying Vh ⊂ V where Vh is a discrete function space
on the mesh Th = {κ} consisting of elements κ covering the computational domain
Ω; cf. [2, 12] for the choice of V in the case of discontinuous Galerkin methods.
Subtracting (2.3) from (2.2) we then obtain the Galerkin orthogonality

N (u,vh) −N (uh,vh) = 0 ∀vh ∈ Vh. (2.4)

Let J(·) be a nonlinear and differentiable target functional. We define the mean–
value linearisation of J(·) as follows

J̄(u,uh;u− uh) = J(u) − J(uh) =

∫ 1

0

J ′[θu + (1 − θ)uh](u − uh) dθ, (2.5)

where J ′[w](·) denotes the Fréchet derivative of J(·) evaluated at some w in V.
Analogously, for v in V, we define the mean–value linearisation of N (·,v)

M(u,uh;u − uh,v) = N (u,v) −N (uh,v)

=

∫ 1

0

N ′
u
[θu + (1 − θ)uh](u − uh,v) dθ. (2.6)

Here, N ′
u
[w](·,v) denotes the Fréchet derivative of u 7→ N (u,v), for v ∈ V fixed, at

some w in V. Let us now introduce the following adjoint problem: find z ∈ V such
that

M(u,uh;w, z) = J̄(u,uh;w) ∀w ∈ V. (2.7)

Choosing w = u− uh in (2.7), recalling the linearization performed in (2.5), and
exploiting the Galerkin orthogonality (2.4) we get

J(u) − J(uh) = J̄(u,uh;u− uh) = M(u,uh;u− uh, z)

= M(u,uh;u − uh, z − zh) = −N (uh, z − zh) ∀zh ∈ Vh,
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and hence the error representation formula

J(u) − J(uh) = R(uh, z − zh), (2.8)

where R(uh, z−zh) = −N (uh, z−zh) includes the primal residuals multiplied by the
difference of the adjoint solution z and an arbitrary discrete function zh ∈ Vh.

We note that the error representation formula (2.8) depends on the unknown ana-
lytical solution z to the adjoint problem (2.7) which in turn depends on the unknown
analytical solution u to the primal problem (2.1). Thus, in order to render these
quantities computable, both u and z must be replaced by suitable approximations.
Here, the linearizations leading to M(u,uh; ·, ·) and J̄(u,uh; ·) are performed about
uh and the adjoint solution z is replaced by the solution z̃ to the following linearized
adjoint problem: Find z̃ ∈ V such that

N ′[uh](wh, z̃) = J ′[uh](w) ∀w ∈ V, (2.9)

which again is replaced by the solution z̃h ∈ Ṽh to the discrete adjoint problem

N ′[uh](wh, z̃h) = J ′[uh](wh) ∀wh ∈ Ṽh, (2.10)

which is usually computed on the same mesh Th used for uh, but with a higher degree
polynomial. Rewriting the error representation (2.8) as follows

J(u) − J(uh) =R(uh, z − zh)

=R(uh, z − z̃) + R(uh, z̃− z̃h) + R(uh, z̃h − zh),
(2.11)

we see that replacing the adjoint solution z in (2.8) by the solution z̃h to the discrete
adjoint problem (2.10) to obtain the following approximate error representation

J(u) − J(uh) ≈ R(uh, z̃h − zh), (2.12)

corresponds to ignoring in (2.11) the error R(uh, z− z̃) due to the linearization of the
adjoint problem and the error R(uh, z̃− z̃h) due to the approximation of the linearized
adjoint problem. In fact, it can be shown (see e.g. [7]) that the linearization and the
approximation errors of the adjoint problem are of higher order (quadratic) in the
discretization error, e = u − uh, and may thus be neglected. In fact, in a series of
publications, e.g. [14, 15, 18] among many others, it has been demonstrated that
the approximate error representation in (2.12) is close to the true error in the target
functional.

Finally, we note that (2.12) can be localized

J(u) − J(uh) ≈ R(uh, z̃h − zh) =
∑

κ∈Th

η̃κ, (2.13)

where |η̃κ| are local error indicators including the primal local residuals weighted with
the discrete adjoint solution, sometimes denoted as dual-weighted-residual indicators
[7] or as adjoint-based indicators. These local indicators can be used to drive an
adaptive refinement (and coarsening) algorithm specifically tailored to the accurate
and efficient approximation of the target quantity J(u). For example, suppose that
the aim of the computation is to compute J(·) such that the error |J(u) − J(uh)|
is less than some user–defined tolerance TOL, i.e. |J(u) − J(uh)| ≤ TOL, then in
practice we may enforce the stopping criterion |

∑
κ∈Th

η̃κ| ≤ TOL. If this condition
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is not satisfied on the current finite element mesh Th, then the local indicators ηκ

are employed as local error indicators to guide mesh refinement and coarsening. The
cycle of the goal-oriented adaptive mesh refinement [14] may be outlined as follows:

Algorithm 2.1 (Single-target adaptive algorithm). Adaptive algorithm for the

accurate and efficient approximation of a single target quantity J(u):
1. Construct an initial mesh Th.

2. Compute uh ∈ Vh, see (2.2), on the current mesh Th.

3. Compute z̃h ∈ Ṽh, see (2.10), on the same mesh employed for uh, with p̃ > p.
4. Evaluate the approximate error representation R(uh, z̃h − zh) ≈

∑
κ∈Th

η̃κ.

5. If |
∑

κ∈Th
η̃κ| ≤ TOL, where TOL is a given tolerance, then STOP.

6. Otherwise, refine and coarsen a fixed fraction of the total number of elements

according to the size of |η̃κ| and generate a new mesh Th; GOTO 2.

Again, in several publications, e.g. [7, 10, 11, 15], the strength of this adaptive
algorithm has been demonstrated.

3. Error estimation for multiple target quantities.

3.1. The standard approach. Let us now consider the extension of the above
analysis to the error estimation and goal-oriented mesh refinement for multiple target
quantities. Given N target functional, Ji(u), i = 1, . . . , N , the standard approach
for deriving an error representation formula analogous to (2.8) for each Ji(·) is to
introduce the following N adjoint problems: find zi ∈ V such that

M(u,uh;w, zi) = J̄i(u,uh;w) ∀w ∈ V, (3.1)

for i = 1, . . . , N . Analoguous to (2.8) we obtain the following error representation
formula

Ji(u) − Ji(uh) = M(u,uh;u − uh, zi − zh) = R(uh, zi − zh), (3.2)

for each Ji(·), i = 1, . . . , N . In practice, the dual solutions zi, i = 1, . . . , N , are
unknown analytically and must be approximated numerically. After linearization and
approximation: find z̃i,h ∈ Ṽh such that

N ′[uh](wh, z̃i,h) = J ′
i [uh](wh) ∀wh ∈ Ṽh, (3.3)

this amounts to solving N systems of linear equations with the same matrix but
N different right–hand side vectors. Based on the discrete adjoint solutions, z̃i,h,
i = 1, . . . , N , the following approximate error representation formulae and local error
indicators can be evaluated

Ji(u) − Ji(uh) ≈ R(uh, z̃i,h − zh) =
∑

κ∈Th

η̃(i)
κ , (3.4)

for i = 1, . . . , N .

3.2. A new approach. In view of the error representation formula (3.2) an
alternative approach consists of considering the following error equation: find e ∈ V

such that

M(u,uh; e,w) = R(uh,w), ∀w ∈ V (3.5)

whose solution is simply the discretization error e = u − uh. We remark that in
the context of duality, (3.5) may be thought of as the adjoint of the adjoint problem
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and (3.2) the adjoint/adjoint-adjoint equivalence relating (3.1) to (3.5). Again after
linearization, we obtain the following discrete error equation: find ẽh ∈ Ṽh such that

N ′[uh](ẽh,wh) = R(uh,wh) ∀wh ∈ Ṽh, (3.6)

Thereby, in practice, instead of solving N discrete adjoint problems, cf. (3.3),

for z̃i,h ∈ Ṽh with data Ji(·) and then evaluating R(uh, z̃i,h − zh) to determine the
size of the error in the target functional Ji(·), i = 1, . . . , N , one can simply solve the
discrete error equation (3.5) for the approximate error ẽh ∈ Ṽh and evaluate

Ji(u) − Ji(uh) = J̄(u,uh; e) ≈ J ′
i [uh](e) ≈ J ′

i [uh](ẽh), (3.7)

as an approximation to Ji(u) − Ji(uh) for i = 1, . . . , N . When N > 1 this approach
is clearly much more computationally efficient than the direct method. However, a
disadvantage of this second approach is that while solving the discrete error equation
(3.6) for ẽh gives information concerning the size of the error in the computed target
functionals Ji(·), i = 1, . . . , N , it does not provide the necessary local information
on each element in the computational mesh to guide adaptive mesh refinement when
the desired level of accuracy has not been achieved on the current mesh. On the
other hand, computing the solution zi,h, i = 1, . . . , N , to the N discrete adjoint
problems (3.3), the approximate error representation formulae in (3.4) provide not
only information concerning the size of the error in the computed target functionals,

but also local error indicators |η̃
(i)
κ | which can be employed for adaptive mesh design.

4. Adaptive refinement for multiple target quantities. In this section we
propose a strategy based on solving only two auxiliary problems (the discrete error
equation (3.6) and an adjoint problem subject to appropriate data which stems from
a specific combined target functional, cf. (4.5) below) which provide all the necessary
information needed to both estimate the size of the error in the computed target
functionals, as well as provide local error indicators that can be used to drive an
adaptive mesh refinement algorithm.

Given N different target functionals Ji(·), i = 1, . . . , N , N > 1, we would like
to compute each Ji(uh) to within a given user–defined tolerance TOLi, i = 1, . . . , N ,
respectively. More precisely, we consider the following problem: find Ji(uh) ∈ R,
i = 1, . . . , N , such that

|Ji(u) − Ji(uh)| ≤ TOLi , for i = 1, . . . , N . (4.1)

However, as we want to define a combined target quantity Jc(·) including all original
target quantities Ji(·), i = 1, . . . , N , we weaken the requirement (4.1), and simply
insist that the sum of the relative errors in each of the target functionals Ji(·), i =
1, . . . , N , is less than TOL. In practice, since Ji(u), i = 1, . . . , N , is unknown, we
approximate the sum of the relative errors by

N∑

i=1

|Ji(u) − Ji(uh)|/|Ji(uh)|, (4.2)

see [16], assuming that Ji(uh) 6= 0, for i = 1, . . . , N . As an alternative choice we might
insist that the (weighted) sum of absolute errors in each of the target functionals Ji(·),
i = 1, . . . , N , is less than TOL, i.e. considering

N∑

i=1

αi|Ji(u) − Ji(uh)|. (4.3)
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where αi > 0, i = 1, . . . , N . Here, choosing αi = 1, i = 1, . . . , N , represents the
special case of considering the (unweighted) sum of absolute errors.

Let us begin by assuming that the sign of the error in each target functional Ji(·),
i = 1, . . . , N , is known. For example, in some applications it may be known from either
theoretical considerations or numerical experimentation that under mesh refinement
the computed quantity of interest Ji(uh) is always either smaller or greater than the
exact value Ji(u), for i = 1, . . . , N . This includes the special case of monotonically
convergent target quantities. For the case that under mesh refinement the quantity
J(uh) converges to J(u) from above, for example, then the error J(u)−J(uh) is always
negative; analogously, when it converges from below the error is always positive.

Employing this a priori knowledge concerning the convergence of the target func-
tionals, we introduce a combined target functional

Jc(v) =

N∑

i=1

ωiJi(v) , (4.4)

where ωi = si/|Ji(uh)| and ωi = αisi in case of considering relative and weighted
absolute errors (4.2) and (4.3), respectively, and si denotes the expected signs of the
errors Ji(u) − Ji(uh), i = 1, . . . , N , respectively. Thereby, we may now proceed as
in Section 2 to derive an error representation formula for the error in the combined
target functional Jc(·). To this end, we introduce the following adjoint problem: find
zc ∈ V such that

M(u,uh;w, zc) = J̄c(u,uh;w) ∀w ∈ V. (4.5)

where J̄c(u,uh;w) =
∑N

i=1 ωiJ̄i(u,uh;w) is the mean value linearization to Jc ana-
loguous to (2.5). Thus, we now deduce the following error representation formula

Jc(u) − Jc(uh) =

N∑

i=1

ωi(Ji(u) − Ji(uh)) =

N∑

i=1

ωiJ̄i(u,uh;u− uh)

= M(u,uh;u − uh, zc − zh) = R(uh, zc − zh)

(4.6)

In general, the signs si, i = 1, . . . , N , will not be known a priori. Thereby, we must
first solve the discrete error equation (3.6) for ẽh and evaluate s̃i = sgn(J ′

i [uh](ẽh)),
i = 1, . . . , N . Then, the adjoint problem (4.5) may be solved computationally using
the predicted values of si, i = 1, . . . , N in Jc(·): Find z̃c,h ∈ Ṽh such that

N ′[uh](wh, z̃c,h) = J ′
c[uh](wh) ∀wh ∈ Ṽh. (4.7)

and the approximate error representation formula can be evaluated:

Jc(u) − Jc(uh) = R(uh, zc − zh) ≈ R(uh, zc − zh) =
∑

κ∈Th

η̃κ (4.8)

This now provides both global information concerning the size of the error in the
combined target functional Jc(·), as well as local information necessary for adaptive
mesh refinement. Thus, the cycle of the adaptive algorithm can be outlined as follows:

Algorithm 4.1 (Multi-target adaptive algorithm). Adaptive algorithm for the

accurate and efficient approximation of multiple target quantities Ji(u), i = 1, . . . , N :

1. Construct an initial mesh Th.
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2. Compute uh ∈ Vh, see (2.2), on the current mesh Th.

3. Compute ẽh ∈ Ṽh, see (3.6), on the same mesh employed for uh, with p̃ > p.
4. Evaluate Ji(u) − Ji(uh) ≈ J ′

i [uh](ẽh) =: ψi, i = 1, . . . , N .

5. If |ψi| ≤ TOLi for all i = 1, . . . , N , then STOP.

6. Build the target quantity Jc based on s̃i = sgn(ψi), i = 1, . . . , N .

7. Compute z̃c,h ∈ Ṽh, see (4.7), on the same mesh employed for uh, with p̂ > p.
8. Evaluate the approximate error representation

∑
κ∈Th

η̃κ, see (4.8).
9. If |

∑
κ∈Th

η̃κ| ≤ TOL, where TOL is a given tolerance, then STOP.

10. Otherwise, refine and coarsen a fixed fraction of the total number of elements

according to the size of |η̃κ| and generate a new mesh Th; GOTO 2.

Here, the stopping criterion in lines (5) or (9) of Algorithm 4.1 can be used corre-
sponding to formulae (4.1) and (4.2)≤ TOL or (4.3)≤ TOL, respectively. This approach
leads to the solution of only two auxiliary problems, in comparison to the N required
for the standard approach.

We note that this approach has previously been developed for and applied to
the discontinuous Galerkin discretization of the inviscid 1d Burgers equation in [16]
considering the sum of relative errors of point values of the solution. In the follow-
ing sections we apply this approach to the interior penalty discontinuous Galerkin
discretization of the compressible Navier-Stokes equations [19] considering sums of
relative and absolute errors of aerodynamic force coefficients including pressure in-
duced and viscous drag, lift and moment coefficients.

5. The compressible Navier-Stokes equations. In this section we consider
the two-dimensional stationary compressible Navier-Stokes equations

∇ · (Fc(u) −Fv(u,∇u)) = 0 in Ω, (5.1)

subject to various boundary conditions, e.g. no-slip wall boundary conditions with
vanishing velocity v = (v1, v2)

⊤ = 0 at isothermal walls Γiso where T = Twall, or at
adiabatic walls Γadia where n · ∇T = 0; see [17] or [19] for more details. The vector of
conservative variables u and the convective fluxes Fc(u) are as defined in

u =




ρ
ρv1
ρv2
ρE


 , fc

1 (u) =




ρv1
ρv2

1 + p
ρv1v2
ρHv1


 and fc

2 (u) =




ρv2
ρv1v2
ρv2

2 + p
ρHv2


 . (5.2)

Furthermore, the viscous fluxes Fv(u,∇u) = (fv
1 (u,∇u), fv

2 (u,∇u)) are defined by

fv
1 (u,∇u) =




0
τ11
τ21

τ1jvj + KTx1


 and fv

2 (u,∇u) =




0
τ12
τ22

τ2jvj + KTx2


 . (5.3)

Here T denotes the temperature given by e = cvT , K is the thermal conductivity coef-
ficient and τ is the viscous stress tensor defined by τ = µ

(
∇v + (∇v)⊤ − 2

3 (∇ · v)I
)

where µ is the dynamic viscosity coefficient. Writing G to denote the homogeneity
tensor, with Gij(u) = ∂fv

i (u,∇u)/∂uxj
, for i, j = 1, 2, cf. [17], the viscous fluxes may

be written in the form fv
i (u,∇u) = Gij(u)∂u/∂xj , i = 1, 2, or more compactly, we

may write Fv(u,∇u) = G(u)∇u.
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6. DG discretization of the compressible Navier-Stokes equations. In
this section we recall the consistent and adjoint consistent interior penalty discontin-
uous Galerkin discretization of the compressible Navier-Stokes equations as derived
in [12] and the interior penalty stabilization term as introduced in [19].

First, we begin by introducing some notation. We assume that Ω can be sub-
divided into shape-regular meshes Th = {κ} consisting of quadrilateral elements κ.
Here, h denotes the piecewise constant mesh function defined by h|κ ≡ hκ = diam(κ)
for all κ ∈ Th. Let us assume that each κ ∈ Th is an image of a fixed reference
element κ̂, that is, κ = σκ(κ̂) for all κ ∈ Th. Here, we shall only consider the case
when κ̂ is the open unit square in R

2. Furthermore the mapping σκ of the reference
element κ̂ to the element κ in real space is assumed to be bijective and smooth, with
the eigenvalues of its Jacobian matrix being bounded from below and above. For
elements in the interior of the domain, ∂κ ∩ Γ = ∅, the mapping σκ is given by a
bilinear function; In order to represent curved boundaries mappings can be used that
include polynomials of higher degree on boundary elements; see [10] for more details
about curved elements. On the reference element κ̂ we define spaces of tensor product
polynomials of degree p ≥ 0 as follows:

Qp(κ̂) = span {x̂α : 0 ≤ αi ≤ p, i = 1, 2} , (6.1)

where α denotes a multi-index and x̂α =
∏2

i=1 x̂
αi

i . Finally, we introduce the fi-
nite element space V

p
h consisting of discontinuous vector–valued product polynomial

functions of degree p ≥ 0, defined by

V
p
h = {vh ∈ [L2(Ω)]4 : vh|κ ◦ σκ ∈ [Qp(κ̂)]

4 , κ ∈ Th}. (6.2)

Suppose that v|κ ∈
[
H1(κ)

]m
, m ∈ N, for each κ ∈ Th. Let κ and κ′ be two

adjacent elements of Th and x be an arbitrary point on the interior edge e = ∂κ∩∂κ′.
By v±

κ we denote the traces of v taken from within the interior of κ and κ′, respectively.
Since below it will always be clear from the context which element κ in the subdivision
Th the quantities v+

κ and v−
κ correspond to, for the sake of notational simplicity, we

shall suppress the letter κ in the subscript and write, respectively, v+ and v−, instead.

We now define average and jump operators for vector- and matrix-valued func-
tions. To this end, let κ+ and κ− be two adjacent elements of Th and x be an
arbitrary point on the interior edge e = ∂κ+ ∩ ∂κ− ⊂ ΓI . Moreover, let v and τ be
vector- and matrix-valued functions, respectively, that are smooth inside each element
κ±. By v± := v|∂κ± and τ± := τ |∂κ± we denote the traces of, respectively, v and τ
on e taken from within the interior of κ±, respectively. Then, we define the averages
at x ∈ e by {v} = (v+ + v−)/2 and {τ} = (τ+ + τ−)/2. Similarly, the jump at x ∈ e
is given by [[v]] = v+ ⊗ nκ+ + v− ⊗ nκ− . On a boundary edge e ⊂ Γ, we set {v} = v,

{τ} = τ and [[v]] = v ⊗ n. For matrices σ, τ ∈ R
m×n, m,n ≥ 1, we use the standard

notation σ : τ =
∑m

k=1

∑n
l=1 σklτkl; additionally, for vectors v ∈ R

m,w ∈ R
n, the

matrix v ⊗ w ∈ R
m×n is defined by (v ⊗ w)kl = vk wl.

The discontinuous Galerkin discretization of the compressible Navier–Stokes equa-
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tions (5.1) is given by: Find uh ∈ V
p
h such that

N (uh,v) ≡ −

∫

Ω

Fc(uh) : ∇hv dx +
∑

κ∈Th

∫

∂κ\Γ

H(u+
h ,u

−
h ,n

+) · v+ ds

+

∫

Ω

Fv(uh,∇huh) : ∇hv dx −

∫

ΓI

{Fv(uh,∇huh)} : [[v]] ds

−

∫

ΓI

{G⊤(uh)∇hv} : [[uh]] ds+

∫

ΓI

δ(uh) : [[v]] ds

+NΓ(uh,v) = 0 (6.3)

for all v in V
p
h. Here, the numerical flux H(·, ·, ·) may be chosen to be any two–point

monotone Lipschitz function which is consistent, i.e. H(v,v,n) = Fc(v) · n, and
conservative, i.e. H(v,w,n) = −H(w,v,−n). The penalization term is given by

δ(uh) = δip(uh) = CIP

p2

he
{G(uh)}[[uh]], (6.4)

where

he = min(meas(κ),meas(κ′))/meas(e) (6.5)

represents the element dimension orthogonal to the edge e of the elements κ and κ′

adjacent to e. Furthermore, CIP is a positive constant, which, for reasons of stability,
must be chosen sufficiently large. Finally, the boundary terms included in NΓ(uh,v)
are given by

NΓ(uh,v) =

∫

Γ

HΓ(u+
h ,uΓ(u+

h ),n+) · v+ ds+

∫

Γ

δΓ(u+
h ) : v ⊗ n ds,

−

∫

Γ

n · Fv
Γ(u+

h ,∇hu
+
h )v+ ds

−

∫

Γ

(
G⊤

Γ (u+
h )∇hv

+
h

)
:
(
u+

h − uΓ(u+
h )
)
⊗ n ds.

(6.6)

where the penalization term at the boundary is given by

δΓ(uh) = δipΓ (uh) = CIP

p2

he
GΓ(uh) (uh − uΓ(uh)) ⊗ n. (6.7)

Here, the viscous boundary flux Fv
Γ and the corresponding homogeneity tensor

GΓ are defined by

Fv
Γ(uh,∇uh) = Fv(uΓ(uh),∇uh) = GΓ(uh)∇uh = G(uΓ(uh))∇uh. (6.8)

Furthermore, on adiabatic boundaries Γadia ⊂ ΓW , Fv
Γ and GΓ are modified such that

n · ∇T = 0. Finally, we define

HΓ(u+
h ,uΓ(u+

h ),n) = n · Fc
Γ(u+

h ) = n · Fc(uΓ(u+
h )), (6.9)

where the boundary function uΓ(·) is given by uΓ(w) = (w1, 0, 0, w4)
⊤ on Γadia, and

by uΓ(w) = (w1, 0, 0, w1cvTwall)
⊤

on Γiso; see [17] or [19] for the treatment of other
boundary conditions. We note that the boundary function uΓ(·) is consistent, i.e. on
all boundary parts, uΓ(·) is chosen such that the exact solution u to (5.1) satisfies
uΓ(u) = u. As a consequence also δΓ(·) as defined in (6.7) is consistent. In fact, the
exact solution u to (5.1) satisfies δΓ(u) = 0. Finally, we note that the viscous and
convective boundary fluxes in (6.8) and (6.9) are chosen so that the discretization of
boundary terms in combination with specific target quantities is adjoint consistent.
We refer to [12] for a detailed analysis on the adjoint consistency property in this
case.
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7. Consistency, adjoint consistency and a posteriori error estimates.

Following [19] we using integration by parts in (6.3) and obtain the primal residual
form given by: find uh ∈ V

p
h such that

R(uh,v) ≡

∫

Ω

R(uh) · v dx +
∑

κ∈Th

∫

∂κ\Γ

r(uh) · v+ + ρ(uh) : ∇v+ ds

+

∫

Γ

rΓ(uh) · v+ + ρ
Γ
(uh) : ∇v+ ds = 0 ∀v ∈ V

p
h, (7.1)

where the primal element, interior face and boundary residuals are given by

R(uh) = −∇ · Fc(uh) + ∇ · Fv(uh,∇huh) in κ, κ ∈ Th,

r(uh) =n · Fc(u+
h ) −H(u+

h ,u
−
h ,n

+) −
1

2
[[Fv(uh,∇huh)]] − n · δ(uh),

ρ(uh) =
1

2

(
G(uh)[[uh]]

)⊤
on ∂κ \ Γ, κ ∈ Th,

rΓ(uh) =n ·
(
Fc(u+

h ) −Fc
Γ(u+

h ) −Fv(u+
h ,∇u+

h ) + Fv
Γ(u+

h ,∇u+
h )
)
− n · δΓ(uh),

ρ
Γ
(uh) =

(
G⊤

Γ (u+
h ) :

(
u+

h − uΓ(u+
h )
)
⊗ n

)⊤
on Γ. (7.2)

As shown in [19] the exact solution u to (5.1) satisfies

R(u) = 0, r(u) = 0, ρ(u) = 0, rΓ(u) = 0, ρ
Γ
(u) = 0.

Thereby, the discretization (6.3) is consistent.
In the following, we consider the aerodynamic force coefficients of a body im-

mersed in a viscous fluid with inlet flow at the angle of attack α. In particular, we
consider the pressure induced and viscous drag coefficients, cdp and cdf , respectively,

Jcdp
(u) =

1

C∞

∫

ΓW

pn · ψd ds, Jcdf
(u) = −

1

C∞

∫

ΓW

(τ n) ·ψd ds, (7.3)

the pressure induced and viscous lift coefficients, clp and clf , respectively,

Jclp
(u) =

1

C∞

∫

ΓW

pn · ψl ds, Jclf
(u) = −

1

C∞

∫

ΓW

(τ n) · ψl ds, (7.4)

and the pressure induced and viscous moment coefficients, cmp and cmf , respectively,

Jcmp
(u) =

1

C∞

∫

ΓW

(x − xref) × pn ds,

Jcmf
(u) = −

1

crefC∞

∫

ΓW

(x − xref) × τ n ds,

(7.5)

as well as the total drag, lift and moment coefficients, cd = cdp + cdf , cl = clp + clf
and cm = cmp + cmf , respectively, given by

Jcd
(u) = Jcdp

(u) + Jcdf
(u), (7.6)

Jcl
(u) = Jclp

(u) + Jclf
(u), (7.7)

Jcm
(u) = Jcmp

(u) + Jcmf
(u). (7.8)
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Here, ψd = (cos(α), sin(α))⊤ and ψl = (− sin(α), cos(α))⊤ for the drag and lift co-

efficients, respectively. Furthermore, C∞ = 1
2γp∞M

2
∞ l̄ = 1

2γ
|v∞|2

c2
∞

p∞ l̄ = 1
2ρ∞|v∞|2 l̄,

where M∞ denotes the Mach number at free-stream conditions, c∞ is the free-stream
speed of sound defined by c2∞ = γp∞/ρ∞, where p∞ and ρ∞ denote the freestream
pressure and density, respectively, and l̄ denotes the reference (chord) length of the
body. Finally, xref is the moment reference point, usually xref = (0.25, 0) for a profile
of unit length, and cref is a dimensionless reference chord length usually equal to l̄.
Here, we adopt the notation a × b = a1b2 − a2b1 for a,b ∈ R

2.
In [12] is has been shown that the discretization (6.3) together with the total

drag or lift coefficients, cd and cl, is adjoint consistent, see also [2, 9, 23], provided
the target functionals, Jcd

(u) and Jcl
(u), respectively, are modified as follows

J̃(uh) = J(uΓ(uh)) +

∫

ΓW

δΓ(uh) : zΓ ⊗ n ds, (7.9)

where the second and third component of zΓ = 1
C∞

(0, ψ1, ψ2, 0)⊤ represent the cor-
responding constant boundary values of the continuous adjoint solution z related to
the total drag and lift coefficient; cf. [12] for more details. Similarly, it can be
shown that the discretization (6.3) together with the total moment coefficient cm is
adjoint consistent provided the target functional Jcm

(u) is modified like in (7.9) with
zΓ(x) = 1

crefC∞
(0,−d2(x), d1(x), 0)⊤ and d(x) = x − xref on ΓW .

Finally, we recall from [12] that considering one of the pressure induced or viscous
force coefficients, c⋆p and c⋆f , respectively, where ⋆ stands for d, l or m, there is
no modification of Jc⋆p

(u) or Jc⋆f
(u) such that the discretization (6.3) is adjoint

consistent. Nevertheless, we modify the viscous force coefficients Jc⋆f
(u) like in (7.9)

and the pressure induced force coefficients Jc⋆p
(u) as follows

J̃(uh) = J(uΓ(uh)), (7.10)

in order to ensure that we recover the adjoint consistent modification of the total
force coefficients Jc⋆

(u), see (7.9), simply by adding the modified pressure induced

and viscous force coefficients, J̃c⋆
(u) = J̃c⋆p

(u) + J̃c⋆f
(u), for ⋆ ∈ {d, l,m}. We note,

that the functional modifications given in (7.9) and (7.10) are consistent modifications
of the target functionals. In fact, due to the consistency of the boundary function uΓ(·)

and the penalization term δΓ(·) the exact solution u to (5.1) satisfies J̃(u) = J(u).
We now can derive following a posteriori error estimate of the discontinuous

Galerkin discretization (6.3) for the error measured in terms of one of the modified
aerodynamic force coefficients defined above.

Lemma 7.1 (Error representation formula). Let u and uh denote the solutions

of (5.1) and (6.3), respectively, and suppose that the adjoint problem (2.7), with J

being replaced by J̃ , is well–posed. Then, the following error representation holds:

J(u) − J̃(uh) =
∑

κ∈Th

ηκ, (7.11)

where the local error contributions ηκ, κ ∈ Th, are given by

ηκ =

∫

κ

R(uh) · (z − zh) dx +

∫

∂κ\Γ

r(uh) · (z − zh)+ + ρ(uh) : ∇(z − zh)+ ds

+

∫

κ∩Γ

rΓ(uh) · (z − zh)+ + ρ
Γ
(uh) : ∇(z − zh)+ ds. (7.12)
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Here, z is the solution to the adjoint problem (2.7) with J being replaced by J̃ . zh may

be any discrete function in V
p
h, and R(uh), r(uh), ρ(u), rΓ(uh) and ρ

Γ
(uh) are the

primal element, interior face and boundary residuals, respectively, defined in (7.2).

Proof. Due to the consistency of the functional modification we have J(u) = J̃(u).
According to the derivation along the lines in Section 2 we have

J(u) − J̃(uh) = J̃(u) − J̃(uh) = −N (uh, z − zh) = R(uh, z − zh),

and after integration by parts on each element κ ∈ Th like in (7.1) we obtain (7.11).

We are now ready to prove the following error bound, referred to as the Type II
error bound in the literature, cf. [21]. This error bound gives rise to the residual-based

indicators |η
(res)
κ |, see (7.14) below.

Corollary 7.2 (Type II error bound). Given that the assumptions of Lemma

7.1 hold, suppose that z ∈ [Hs(Ω)]4, 2 ≤ s ≤ p+1, and that we have found a constant

Cstab such that ‖z‖Hs(Ω) ≤ Cstab. Then, the following Type II a posteriori error bound

holds:

|J(u) − J̃(uh)| ≤ C

(
∑

κ∈Th

(
η(res)

κ

)2
)1/2

, (7.13)

where the residual-based indicators η
(res)
κ , κ ∈ Th, are given by

η(res)
κ =ht+1

κ ‖R(uh)‖κ + ht+1/2
κ ‖r∂κ(uh)‖∂κ + ht−1/2

κ ‖ρ
∂κ

(uh)‖∂κ, (7.14)

where t = min(s, p). Here, r∂κ = r on ∂κ \ Γ and r∂κ = rΓ on Γ, i.e.

‖r∂κ(uh)‖2
∂κ = ‖r(uh)‖2

∂κ\Γ + ‖rΓ(uh)‖2
Γ,

and analoguously for ρ
∂κ

,

‖ρ
∂κ

(uh)‖2
∂κ = ‖ρ(uh)‖2

∂κ\Γ + ‖ρ
Γ
(uh)‖2

Γ,

where R(uh), r(uh), ρ(u), rΓ(uh) and ρ
Γ
(uh) are the primal element, interior face

and boundary residuals, respectively, defined in (7.2).

Proof. Selecting zh = Phz ∈ Vh in (7.11), applying the Cauchy-Schwarz inequal-
ity together with standard approximation estimates for z − Phz (see [18] for more
details) we obtain (7.13).

Note that Corollary 7.2 is the extension of Corollary 4.5 in [18] for the adjoint
inconsistent discretization of the compressible Navier-Stokes equations given in [18]
to the adjoint consistent discretization [19] considered in this article.

As described in Section 2 the adjoint-based indicators |ηκ|, see (7.12), can be

used for goal-oriented refinement. The residual-based indicators |η
(res)
κ |, see (7.14)

include primal residuals but do not dependent on an adjoint solution and are thus
much cheaper to evaluate than adjoint-based indicators. In the following section
we compare the proposed multi-target adaptive algorithm to current adjoint-based
algorithms as well as to a residual-based algorithm.



14 R. HARTMANN

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.2  0  0.2  0.4  0.6  0.8  1  1.2

Fig. 8.1. ADIGMA MTC-3 test case: Mach number isolines. The laminar compressible flow
at M = 0.5, α = 2◦, Re = 5000 is a subsonic flow with a laminar separation at the trailing edge.
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Fig. 8.2. Coarse mesh with 400 elements: (left) full and (right) detailed view.

8. Numerical results. In this section we present several numerical results
demonstrating the performance of the a posteriori error estimation and goal-oriented
mesh refinement for the accurate and efficient approximation of multiple force co-
efficients. To this end, we consider the MTC-3 test case defined in the European
project ADIGMA [1]: A laminar compressible flow around a NACA0012 airfoil with
inflow Mach number equal to 0.5, at an angle of attack α = 2◦, and Reynolds number
Re = 5000 with adiabatic no-slip wall boundary condition imposed on the airfoil ge-
ometry. This is a steady subsonic flow with a large laminar separation at the trailing
edge, see Figure 8.1. The adaptive algorithms performed in the following will be based
on the coarse mesh of 400 quadrilateral elements shown in Figure 8.2.

In this test case the most relevant aerodynamic force coefficients, namely the
pressure induced and viscous drag coefficients, cdp and cdf , respectively, the total
lift coefficient cl and the total moment coefficient cm shall be computed up to a
predefined error tolerance TOL. In the EU project ADIGMA the following industrial
accuracy requirements have been defined for this test case:

|Jcdp
(u) − Jcdp

(uh)| ≤ TOLcdp
= 5 · 10−4,

|Jcdf
(u) − Jcdf

(uh)| ≤ TOLcdf
= 5 · 10−4,

|Jcl
(u) − Jcl

(uh)| ≤ TOLcl
= 5 · 10−3,

|Jcm
(u) − Jcm

(uh)| ≤ TOLcm
= 5 · 10−4.

(8.1)

Additionally, for academic purposes we define the following accuracy requirements:

|J⋆(u) − J⋆(uh)| ≤
1

5
TOL⋆, for ⋆ ∈ {cdp, cdf , cl, cm}, (8.2)

where TOL⋆ stands for the tolerances defined in (8.1). Thereby, the academic accu-
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racy requirements are stronger in the sense that the tolerances for each of the force
coefficients is a fifth of the tolerances in the industrial accuracy requirements.

We remark that in view of the discretization being adjoint consistent for specific
force coefficients only, see Section 7, it would be preferable to approximate the total
drag coefficient cd rather than separately its pressure induced and viscous parts,
cdp and cdf , respectively. Nevertheless, for e.g. wing design at industry some force
coefficients are important to be accurately approximated separating pressure induced
and viscous parts like is requested for the drag coefficient in this case.

Finally we note, that very fine grid computations, also with higher polynomial
degrees, have been performed in order to obtain the following reference values (‘true’
values):

Jcdp
(u) = crefdp = 0.0238006, Jcdf

(u) = crefdf = 0.0322805,

Jcl
(u) = crefl = 0.037468, Jcm

(u) = crefm = −0.01662. (8.3)

These reference values will be used to compare with the force coefficients being evalu-
ated on coarser meshes and using lower polynomial degrees in the following numerical
examples. Also the accuracy of a posteriori error estimates will be investigated based
on the reference values in (8.3).

In all subsequent computations we choose the penalization constant to be CIP = 20
in (6.4). The solutions uh to the nonlinear primal discretization (6.3) are computed
in V

p
h with p = 1, i.e. the flow solutions are approximated using piecewise bilinear

functions. By reducing the nonlinear residual over 6 orders of magnitude on each
mesh it is ensured that the resulting flow solutions are sufficiently converged such
that iterative error contributions are negligible and errors observed with respect to
force coefficients are due to the discretization only. Like in e.g. [15, 18] the solutions

z̃h to the linear discrete adjoint problems (3.3) and (4.7) are computed in Ṽh = V
p̃
h

with p̃ = p+1. Also the solutions ẽh to the discrete error equations (3.6) are computed

in Ṽh = V
p̃
h.

In the following, we investigate the performance of the standard adaptive al-
gorithm described in Section 2 and 3.1 in comparison to the proposed algorithm
described in Sections 3.2 and 4.

8.1. The standard approach. Given N target quantities, Ji(·), i = 1, . . . , N ,
the standard approach of error estimation and goal-oriented adaptive mesh refinement
consists of a multiple application of the single-target adaptive algorithm, i.e. the
cycle of adaptive mesh refinement as given in Algorithm 2.1 is employed for each
of the target quantities separately. This includes the solution of one discrete adjoint
problem (3.3) for each of the target functionals, Ji(·), i = 1, . . . , N , and the evaluation
of the approximate error representation formulae (3.4) for i = 1, . . . , N .

We note that this amounts to solving N systems of linear equations with the same
matrix but N different right–hand side vectors. Although additional adjoint solutions
may possibly be obtained cheaper by using e.g. an LU factorization of the matrix we
refrain from this due to the memory requirements and use an iterative solvers instead.
Furthermore, a multiple application of Algorithm 2.1 leads to N separate sequences
of adaptively refined meshes where each sequence is based on the same coarse grid
but the subsequently refined meshes might differ from sequence to sequence. In fact,
each of the N sequences of adaptively refined meshes is particularly tailored to the
accurate approximation of one of the N target quantities under consideration. As a
consequence each of the adjoint problems must be solved on different meshes.
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Table 8.1
Single-target adaptive algorithm for the numerical approximation of J1(u) = eJcdp

(u).

elem. DoF J1(u) − J1(uh)
∑

κ∈Th
η̃
(1)
κ θ1

400 6400 1.040e-03 -1.404e-03 -1.35
652 10432 3.347e-03 2.959e-03 0.88

1090 17440 4.105e-04 5.712e-04 1.39
1801 28816 -2.019e-04 -1.093e-04 0.54
3034 48544 -2.284e-04 -1.893e-04 0.83
5056 80896 -1.468e-04 -1.373e-04 0.94
8515 136240 -7.400e-05 -7.141e-05 0.96

14374 229984 -3.884e-05 -3.912e-05 1.01
24265 388240 -1.678e-05 -1.698e-05 1.01

Table 8.2
Single-target adaptive algorithm for the numerical approximation of J2(u) = eJcdf

(u).

elem. DoF J2(u) − J2(uh)
∑

κ∈Th
η̃
(2)
κ θ2

400 6400 1.075e-02 1.525e-02 1.42
655 10480 -2.976e-03 -2.592e-03 0.87

1093 17488 -1.418e-03 -1.418e-03 1.00
1804 28864 -3.977e-04 -4.325e-04 1.09
2980 47680 -9.425e-05 -1.110e-04 1.18
5101 81616 -3.930e-05 -4.344e-05 1.11
8413 134608 -2.236e-05 -2.271e-05 1.02

14041 224656 -1.601e-05 -1.631e-05 1.02
23629 378064 -1.221e-05 -1.218e-05 1.00

In Tables 8.1, 8.2, 8.3 and 8.4 we demonstrate the performance of the standard
approach for the numerical approximation of the pressure induced drag, the viscous
drag, the total lift and the total moment coefficient,

J1(u) = J̃cdp
(u), J2(u) = J̃cdf

(u), J3(u) = J̃cl
(u), J4(u) = J̃cm

(u), (8.4)

respectively. In each case, i = 1, . . . , 4, we show the number of elements and degrees of
freedom (DoF) in V1

h, the true error in the functional Ji(u)−Ji(uh), the approximate

error representation formula
∑

κ∈Th
η̃
(i)
κ , and the corresponding effectivity index θi =

∑
κ∈Th

η̃
(i)
κ /(Ji(u)−Ji(uh)). We see that on all meshes but the initial coarse mesh the

quality of the computed error representation formulae
∑

κ∈Th
η̃
(i)
κ is relatively good,

in the sense that θi is close to one; however, as the mesh is refined, we observe that
the effectivity indices θi improve by slowly tending towards unity.

This confirms the behaviour of the a posteriori error estimation as already demon-
strated in previous publications; cf. e.g. [15, 18]. We note however, that for each
target quantity one adjoint problem needs to be solved, see the z1 components of the
adjoint solutions related to the cdp, cdf , cl and cm values in Figure 8.3.

The four different adjoint solutions account for four different sensitivities of how
local residuals contribute to the error in the respective target functionals under consid-
eration. Based on this, four different sequences of meshes are created. The resulting
locally refined meshes are particularly tailored to the accurate and efficient computa-
tion of the respective target quantity under consideration, for brevity we omit more



Error estimation and adaptivity in aerodynamics 17

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.2  0  0.2  0.4  0.6  0.8  1  1.2

(a)

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.2  0  0.2  0.4  0.6  0.8  1  1.2

(b)

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.2  0  0.2  0.4  0.6  0.8  1  1.2

(c)

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.2  0  0.2  0.4  0.6  0.8  1  1.2

(d)

Fig. 8.3. The z1 components of the adjoint solution corresponding to the (a) cdp, (b) cdf , (c)
cl and (d) cm force coefficients, see Section 7.
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Table 8.3
Single-target adaptive algorithm for the numerical approximation of J3(u) = eJcl

(u).

elem. DoF J3(u) − J3(uh)
∑

κ∈Th
η̃
(3)
κ θ3

400 6400 -1.173e-01 -5.869e-02 0.50
658 10528 6.730e-03 6.836e-03 1.02

1108 17728 -1.110e-03 -1.165e-03 1.05
1861 29776 -1.604e-03 -1.808e-03 1.13
3127 50032 -1.066e-03 -1.019e-03 0.96
5224 83584 -4.971e-04 -4.969e-04 1.00

Table 8.4
Single-target adaptive algorithm for the numerical approximation of J4(u) = eJcm (u).

elem. DoF J4(u) − J4(uh)
∑

κ∈Th
η̃
(4)
κ θ4

400 6400 -2.654e-03 -3.836e-03 1.45
670 10720 2.209e-03 2.055e-03 0.93

1138 18208 2.044e-04 1.647e-04 0.81
1912 30592 1.787e-05 1.910e-05 1.07
3295 52720 -1.704e-05 -1.693e-05 0.99

details and refer to similar computations in e.g. [18, 11]. The four sequences of meshes,
however, amount to about four times the number of flow solutions and adjoint solu-
tions to be computed as compared to the case of considering one target functional
only. This computational overhead increases as the number of target functionals N
is increased rendering this approach inefficient for sufficiently large N .

8.2. The new approach for multiple target functionals. In this section we
now employ the approach of a posteriori error estimation and goal-oriented refinement
for multiple target quantities as proposed in Sections 3.2 and 4. Given N target
quantities this approach of error estimation does not require N adjoint solutions.
Instead, as described in Section 3.2, the solutions to N adjoint problems are replaced
by the solution to one discrete error equation. Additionally, based on a combined
target functional including all original target functionals, see Section 4, only one
adjoint solution is required for obtaining adjoint-based indicators to be used in goal-
oriented mesh refinement. In summary, this approach allows the error estimation
and adjoint-based refinement based on two auxiliary problems, namely the discrete
error equation and the discrete adjoint problem, irrespective of the number of target
quantities.

Here, we consider the same test case as above. Again, the goal is the accurate
and efficient approximation of the pressure induced and the vicous drag, the total lift
and the total moment coefficient, see (8.4), including providing error estimates for
each of the computed quantities.

First we adopt the strategy of reducing the sum of the relative errors in the four
target quantities, i.e. we choose the combined target functional in the adjoint problem
(4.5) like in (4.4) with ωi = si/|Ji(uh)|, i = 1, . . . , 4. This results in one sequence of
adaptively refined meshes tailored to the accurate approximation of all four quantities.
In Table 8.5 we collect the data of the adaptive algorithm. Here, we show the number
of elements on the sequence of adaptively refined meshes. Furthermore, there are
four columns, one for each of the target quantities cdp, cdf , cl and cm. Each column is
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Table 8.5
Multi-target adaptive algorithm for the numerical approximation of cdp, cdf , cl and cm targeted

at the reduction of the sum of relative errors. The error estimation is based on the discrete error
equation (3.6) and the estimate (3.7).

error in cdp error in cdf error in cl error in cm
elem. exact estim. exact estim. exact estim. exact estim.

400 1.0e-03 -2.8e-03 1.1e-02 1.7e-02 -1.2e-01 -6.6e-02 -2.7e-03 -4.3e-03
649 1.1e-03 1.2e-03 -3.0e-03 -2.9e-03 6.0e-03 3.7e-03 2.4e-03 2.0e-03

1114 -2.7e-04 -6.7e-05 -1.4e-03 -1.9e-03 -1.1e-03 -1.1e-03 3.8e-04 3.3e-04
1879 -4.2e-04 -3.3e-04 -6.2e-04 -7.5e-04 -6.6e-04 -1.0e-03 -4.5e-05 -9.0e-05
3163 -2.0e-04 -1.7e-04 -4.6e-04 -5.2e-04 -5.4e-04 -6.4e-04 -3.0e-05 -2.7e-05
5248 -1.4e-04 -1.2e-04 -2.3e-04 -2.6e-04 -3.9e-04 -5.7e-04 -8.8e-05 -9.3e-05

subdivided into two subcolumns where the left ones include the exact errors Ji(u) −
Ji(uh), i = 1, . . . , 4, and the right ones include the corresponding a posteriori error
estimates J ′

i [uh](ẽh), i = 1, . . . , 4, see (3.7), based on the solution ẽh ∈ Ṽh to the
discrete error equation (3.6). Here, we see that on all meshes except of the coarsest
mesh the estimated errors are quite close to the exact errors. In particular, the signs
s̃i = sgn(J ′

i [uh](ẽh)), i = 1, . . . , 4, of the error estimates coincide with the signs
si = sgn(Ji(u) − Ji(uh), i = 1, . . . , 4, of the respective exact errors. We recall that
these signs are required in the definition of the combined target funtional in (4.4) and
are approximated by s̃i as described in Section 4. We note, that here the difference
between exact errors and error estimates are larger than the respective differences in
the Tables 8.1-8.4. This is due to the fact that in Table 8.5 the estimates are based
on (3.7) which includes two approximation: first the linearization of Ji(·) about the
discrete function uh and second the replacement of the exact error e by the solution
ẽh ∈ Ṽh to the discrete error equation. In contrast, the error estimates in the Tables
8.1-8.4 include only one approximation, namely the replacement of the exact adjoint
solution z by the discrete adjoint solution zh ∈ Ṽh. Nevertheless, the estimates in
Table 8.5 are sufficiently close to the exact errors to serve as reasonable indication of
the size of the error in each target quantity. We recall that this error estimation is
based not on four (or in general N) adjoint solutions like in Section 8.1 but based on
one solution to a discrete error equation only.

After having investigated the accuracy of the a posteriori error estimation of the
target quantities, we now concentrate on the accuracy of the evaluated target quan-
tities achieved based on the two adaptive algorithms in this and the last subsection.
Scanning through the Tables 8.1-8.4 we see that the industrial accuracy requirements
(8.1) for cdp (resp. cdf , cl and cm) are reached after 2 (resp. 3, 2 and 2) refinement
steps. In contrast to that, in Table 8.5 we see that the accuracy requirements are
reached after 2 (resp. 4, 2 and 2) refinement steps. We notice that there is a slight
increase in the number of refinement steps for the adaptive approach based on the
combined target functional in Table 8.5 in comparison to the single-target adaptive
approaches applied to each of the four of the target functionals separately, see Tables
8.1-8.4. Like in single-target and multi-target optimization algorithms, this is due
to the fact, that the single-target adapted meshes are optimized for the respective
single target quantities whereas the multi-target adapted mesh is optimized for the
combined target functional which results in a kind of compromise between the single-
target adapted meshes that cannot be as accurate for the individual target functionals
as the respective single-target adapted meshes.
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Table 8.6
Multi-target adaptive algorithm for the numerical approximation of cdp, cdf , cl and cm targeted

at the reduction of the weighted sum of absolute errors. The error estimation is based on the solution
to the discrete error equation (3.6) and the estimate (3.7).

error in cdp error in cdf error in cl error in cm
elem. exact estim. exact estim. exact estim. exact estim.

400 1.0e-03 -2.8e-03 1.1e-02 1.7e-02 -1.2e-01 -6.6e-02 -2.7e-03 -4.3e-03
652 1.4e-03 1.4e-03 -3.0e-03 -2.9e-03 6.4e-03 4.1e-03 2.4e-03 2.0e-03

1138 -2.4e-04 -5.0e-05 -1.5e-03 -1.9e-03 -1.1e-03 -1.1e-03 4.3e-04 3.8e-04
1894 -4.7e-04 -3.2e-04 -2.9e-04 -4.9e-04 -5.1e-04 -8.4e-04 -5.5e-05 -6.2e-05
3112 -4.9e-05 2.6e-05 -4.0e-04 -5.0e-04 -5.6e-05 -2.6e-04 5.5e-05 6.3e-05
5131 -1.9e-04 -1.6e-04 -8.3e-05 -1.1e-04 -8.2e-04 -9.2e-04 -2.1e-05 -1.4e-05
8539 -1.0e-04 -8.1e-05 -2.2e-05 -4.9e-05 -1.1e-04 -3.3e-04 -2.4e-05 -1.8e-05

However, the efficiency of the adaptive mesh refinement can be improved: Re-
calling that the accuracy requirements in (8.1) are given in terms of absolute errors
where the tolerances of cdp, cdf and cm are 1/10 times the tolerance of cl, we see that
choosing the combined target functional Jc(·) to correspond to the weighted sum of
absolute errors might be more appropriate for the problem at hand than the combined
target functional corresponding to the sum of relative errors as used in Table 8.5. In
fact, considering the weighted sum of absolute errors, i.e. Jc(·) is given by (4.4) with
ωi = αisi, i = 1, . . . , 4, and adjusting the weighting factors

α1 = 1, α2 = 1, α3 = 0.1, α4 = 1, (8.5)

the influence of each target functional on the combined target functional corresponds
to the specific accuracy requirements given in (8.1).

Analoguous to the adaptive algorithm in Table 8.5 targeted at reducing the sum
of relative errors, we now collect the corresponding data in Table 8.6 for the adaptive
algorithm targeted at reducing the weighted sum of absolute errors. We see that the
behaviour of the error estimation is similar to that described for Table 8.5. We recall
that the latter two tables include the error estimates for the original force coefficients
based on the solutions to the discrete error equations, see Figure 8.4. Additionally,
for the combined target functional Jc(uh) representing the weighted sum of absolute
errors, we now collect the error estimates in Table 8.7. Here, we show the number
of elements and degrees of freedom (DoF) in V1

h, the true error in the combined
functional Jc(u) − Jc(uh), the approximate error representation formula

∑
κ∈Th

η̃κ,
see (4.8), and the corresponding effectivity index θc =

∑
κ∈Th

η̃κ/(Jc(u) − Jc(uh)).
We see that on all meshes even including the initial coarse mesh the quality of the
computed error representation formulae

∑
κ∈Th

η̃κ is extremely good in the sense that
θc is close to one. We recall that these error estimates are based on the discrete
adjoint solution (4.7) related to the combined target functional. Corresponding to
the weighted sum (4.4) of the original target functionals the adjoint solution zc, see
Figure 8.5, represents a linear combination of the adjoint solutions, zi, i = 1, . . . , 4,
(depicted in Figure 8.3) which are related to the original target functionals Ji(u),
i = 1, . . . , 4.

Considering again the accuracy of the computed target quantities we see in Table
8.6 that the industrial accuracy requirements (8.1) for cdp (resp. cdf , cl and cm) are
reached after 2 (resp. 3, 2 and 2) refinement steps which is equal to the number of
refinement steps required in the respective single-target adaptive algorithms in Tables
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Fig. 8.4. The first component of the solution ẽh to the discrete error equation, see (3.6), on
the mesh of 8539 elements, cf. Table 8.6 and Figure 8.7(b).

Table 8.7
Multi-target adaptive algorithm for the numerical approximation of cdp, cdf , cl and cm targeted

at the reduction of the weighted sum of absolute errors. The error estimation is based on the solution,
see Figure 8.5 of the discrete adjoint problem (4.7) and the estimate (4.8).

elem. DoF Jc(u) − Jc(uh)
∑

κ∈Th
η̃κ θc

400 6400 2.618e-02 2.636e-02 1.01
652 10432 7.378e-03 6.809e-03 0.92

1138 18208 2.258e-03 2.074e-03 0.92
1894 30304 8.582e-04 8.508e-04 0.99
3112 49792 5.087e-04 5.622e-04 1.11
5131 82096 3.753e-04 3.706e-04 0.99
8539 136624 1.622e-04 1.621e-04 1.00

8.1-8.4. However, we recall that the adaptive algorithms in Tables 8.1-8.4 include
the solutions to four (or in general N) adjoint solutions whereas the algorithm in
Table 8.6 requires the solution to two auxiliary problems (the discrete error problem
and the discrete adjoint problem) irrespective of the number of target functionals.
This difference can also been seen in terms of computing times. In fact, the four
separate single-target adaptive algorithms in Tables 8.1-8.4 add up to 147.5s to reach
the industrial requirements whereas the multi-target adaptive algorithm, Table 8.6,
requires 80.8s only. Note, that this difference increases when considering N target
quantities for N > 4. In fact, the computing time in the single-target adaptive
algorithms can be expected to increase linearly with the numberN of target quantities,
whereas the computing time of the multi-target adaptive algorithm requires always
two auxiliary problems to be solved and is thus independent of N .

Finally, we compare the goal-oriented (adjoint-based) adaptive algorithms dis-
cussed so far with a residual-based adaptive algorithm. Here, by residual-based in-
dicators we denote the indicators obtained from the so-called Type II error bound

of the discretization error, see Corollary 7.2. The indicators |η
(res)
κ |, κ ∈ Th, include

primal residuals but no adjoint solution. In fact, these indicators are not targeted at
the exact approximation of specific target quantities but at resolving all flow features.
Not depending on the adjoint solution the residual-based indicators are significantly
faster to evaluate than the adjoint-based indicators. Nevertheless, as demonstrated
in a sequence of earlier publications, [7, 10, 11, 15] among others, the sequences of
meshes created using adjoint-based indicators are in general significantly more ef-
ficient and require much less computing resources for accurately approximating the
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Fig. 8.5. The z1 components of the adjoint solution zc corresponding to the combined target
functional Jc(u) which is related to the weighted sum of absolute errors.
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Fig. 8.6. The industrial accuracy requirements (8.1) are met on (a) the residual-based adapted
mesh of 8896 elements in 149.4s and on (b) the multi-target adapted mesh of 1894 elements in
80.8s.

target quantities under consideration than the meshes created using the residual-based
indicators.

A similar behaviour we observe now for the adjoint-based adaptive algorithm for
multiple target functionals proposed in this article in comparison to the residual-
based algorithm. In fact, whereas the multi-target adaptive algorithm meets the
industrial accuracy requirements (8.1) after 3 refinement steps on 1894 elements and in
80.8s, the residual-based adaptive algorithm meets the requirements after 6 refinement
steps on 8896 elements in 149.4s, see the meshes in Figure 8.6. Note, however, that
in the latter case no error estimates are available. In summary, we see that, even
by including the computation of error estimates in each target quantity and in the
combined target functional (weighted sum of relative errors) the multi-target adaptive
algorithm is significantly faster than the residual-based algorithm without providing
error estimates.

This difference becomes even more significant when the stronger accuracy require-
ments (8.2) are imposed. Scanning through Table 8.6 we see that these requirements
for cdp (resp. cdf , cl and cm) are reached after 6 (resp. 5, 3 and 3) refinement steps.
In summary, using the multi-target algorithm the acamedic accuracy requirement are
met after 6 refinement steps on 8539 elements in 664.63s whereas using the residual-
based algorithm the requirements are met after 10 refinement steps on 67660 elements
in 2691.2s, see the meshes in Figure 8.7.
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Fig. 8.7. The academic accuracy requirements (8.2) are met on (a) the residual-based adapted
mesh of 67660 elements in 2691.2s and on (b) the multi-target adapted mesh of 8539 elements in
664.63s.

9. Conclusion. In this article we generalized the a posteriori error estimation
and goal-oriented (adjoint-based) adaptive mesh refinement for single target quantities
to multiple target quantities. Given, sayN target quantities the new approach of error
estimation requires not the solution to N adjoint problems as required by current
approaches but the solution to one discrete error equation only. Additionally, we
defined an adjoint problem connected to a target functional which represents a suitable
combination of the original target functionals. Based on a discrete solution to this
problem adjoint-based indicators are evaluated leading to an adaptive mesh refinement
algorithm specifically tailored to the accurate and efficient approximation of all target
quantities under consideration. This way, the a posteriori error estimation and goal-
oriented adaptive algorithm for multiple target quantities requires not the solutions
to multiple adjoint problems but the solution to two auxiliary problems only (the
discrete error equation and the discrete adjoint problem) irrespective of the number
of target quantities considered.

We presented numerical results applying the new adaptive algorithm to a laminar
compressible flow around an airfoil with the goal to approximate several aerodynamic
force coefficients up to specific accuracy tolerances defined by the industry in the Eu-
ropean project ADIGMA. We demonstrated that based on an appropriately chosen
combined target functional (corresponding to the weighted sum of absolute errors)
used in the multi-target adaptive algorithm we met the prescribed accuracy require-
ments in the same number of local refinement steps but with significantly less com-
puting time than current adaptive approaches which apply the single-target adaptive
algorithms to each target quantity separately. This difference increases for a larger
number N of target quantities as the current approach requires N adjoint solutions
whereas in the proposed multi-adaptive algorithm only two auxiliary problems must
be solved irrespective of the number of target quantities.

Although not being as accurate as the error estimation based on several adjoint
solutions, the error estimation based on the solution to one discrete error equation
still gave reasonably good error estimates with respect to the force coefficients. Ad-
ditionally, the error estimation for the combined target functional representing the
weighted sum of absolute errors was extremely good. Finally, the efficiency of the
proposed adaptive algorithm has been compared with residual-based mesh refinement
which does not require the solution of auxiliary problems but does not provide error
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estimates either. We showed that the industrial as well as stronger academic accu-
racy requirements on the force coefficients are met after significantly less refinement
steps and computing time based on the multi-target algorithm than based on the
residual-based refinement algorithm.
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